cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374602 Array of successive integer solutions to sqrt((d-c)*b^2 + c*(b+1)^2) for nonsquare integers d >= 2 (d=A000037(n) for n >= 1), where b and c are positive integers and c < d, read by antidiagonals.

This page as a plain text file.
%I A374602 #31 Nov 15 2024 23:31:14
%S A374602 5,29,3,169,11,5,985,41,13,3,5741,153,34,7,4,33461,571,89,18,5,10,
%T A374602 195025,2131,233,29,11,11,4,1136689,7953,610,69,28,23,5,7,6625109,
%U A374602 29681,1597,178,62,58,13,8,6,38613965,110771,4181,287,79,338,14,13,22,4
%N A374602 Array of successive integer solutions to sqrt((d-c)*b^2 + c*(b+1)^2) for nonsquare integers d >= 2 (d=A000037(n) for n >= 1), where b and c are positive integers and c < d, read by antidiagonals.
%C A374602 T(n,k) is the diagonal lengths of increasingly nearly regular d-dimensional Pythagorean hyperrectangles.
%C A374602 Each row n divides into equal length, geometrically periodic subsequences, each with its own subsequence period length (A377290) and geometric growth factor (A377291); it is conjectured that this is the case for all n, and that all solutions conform as such and that there are no solutions that do not, but these are not proven.
%C A374602 It is also not known if there is an algorithm for generating values for all rows other than testing all possible values for a row until a subsequence pattern emerges.
%C A374602 Square d produce solutions following a different pattern, shown as A375336.
%F A374602 T(n, 1) = A373666(A000037(n)).
%e A374602 n=row index; d=nonsquare integer of index n (A000037(n)):
%e A374602  n    d   T(n,k)
%e A374602 ---+----+-------------------------------------------------------------
%e A374602  1 |  2 |  5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, ...
%e A374602  2 |  3 |  3, 11,  41, 153,  571,  2131,   7953,   29681,  110771, ...
%e A374602  3 |  5 |  5, 13,  34,  89,  233,   610,   1597,    4181,   10946, ...
%e A374602  4 |  6 |  3,  7,  18,  29,   69,   178,    287,     683,    1762, ...
%e A374602  5 |  7 |  4,  5,  11,  28,   62,    79,    175,     446,     988, ...
%e A374602  6 |  8 | 10, 11,  23,  58,  338,   373,    781,    1970,   11482, ...
%e A374602  7 | 10 |  4,  5,  13,  14,   25,    62,    111,     148,     185, ...
%e A374602  8 | 11 |  7,  8,  13,  32,   57,   139,    158,     259,     638, ...
%e A374602  9 | 12 |  6, 22,  39,  69,   82,   125,    306,     543,    1142, ...
%e A374602 10 | 13 |  4,  5,   7,  17,   30,    43,     53,      76,     185, ...
%e A374602 11 | 14 |  9, 11,  14,  19,   46,    81,    267,     329,     418, ...
%e A374602 12 | 15 |  6, 10,  21,  23,   30,    39,     94,     165,     362, ...
%e A374602 13 | 17 | 25, 27,  34,  41,   98,   171,    260,    1649,    1779, ...
%e A374602 14 | 18 |  6, 13,  15,  18,   21,    50,     87,     132,     198, ...
%e A374602 15 | 19 |  5,  7,   8,   9,   11,    31,     34,      37,      56, ...
%e A374602 16 | 20 | 10, 26,  68, 125,  159,   178,    197,     466,     807, ...
%e A374602 17 | 21 |  6,  9,  12,  13,   14,    33,     57,      86,     134, ...
%e A374602 18 | 22 |  5,  7,   8,  17,   18,    19,     31,      64,      77, ...
%e A374602 19 | 23 | 16, 19,  27,  28,   29,    68,    117,     176,     764, ...
%e A374602 20 | 24 |  6,  9,  11,  14,   36,    39,     57,      58,      59, ...
%e A374602 ...
%e A374602 sqrt((2-1)*1^2 + 1*(1+1)^2) = sqrt(5) -> not an integer so not included.
%e A374602 sqrt((2-1)*3^2 + 1*(3+1)^2) = 5 -> T(1,1).
%e A374602 sqrt((2-1)*20^2 + 1*(20+1)^2) = 29 -> T(1,2).
%e A374602 sqrt((3-2)*1^2 + 2*(1+1)^2) = 3 -> T(2,1).
%e A374602 sqrt((6-2)*7^2 + 2*(7+1)^2) = 18 -> T(4,3).
%o A374602 (PARI) row(n, c)=my(v=List(), d=n+floor(sqrt(n)+1/2) /* d=A000037(n) */, t=ceil(sqrt(d))); while(#v<c, my(b=floor(sqrt(t^2/d))); if ((t^2-d*b^2)%(b*2+1)==0, listput(v, t)); t++); concat(v)
%o A374602 for(n=1, 20,  print(n, " ", row(n, 10)))
%Y A374602 Row 1 is A001653 starting at n=2.
%Y A374602 Row 2 is A079935 starting at n=2.
%Y A374602 Bisection of row 2 starting with the first term is A189356 starting at n=1.
%Y A374602 Bisection of row 2 starting with the second term is A122769 starting at n=2.
%Y A374602 Row 3 is A001519 starting at n=3.
%Y A374602 Bisection of row 3 starting with the first term is A033889 starting at n=1.
%Y A374602 Bisection of row 3 starting with the second term is A033891 starting at n=1.
%Y A374602 Row 4 is A131093 starting at n=3.
%Y A374602 Cf. A000037, A373666.
%Y A374602 Cf. A377290, A377291, A375336.
%K A374602 nonn,tabl
%O A374602 1,1
%A A374602 _Charles L. Hohn_, Jul 13 2024