cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374603 Numerators of sorted rationals r(n) of the form k/d, where d=(i+1)^m, 1 <= m < bigomega(k), bigomega(k) == 0 (mod i), bigomega(d) == 0 (mod i) and gcd(k, prime(j)) = 1 for all j <= i.

Original entry on oeis.org

9, 27, 15, 81, 21, 45, 25, 27, 243, 63, 33, 135, 35, 75, 39, 81, 45, 729, 189, 49, 99, 405, 51, 105, 55, 225, 57, 117, 243, 125, 63, 65, 135, 2187, 69, 567, 147, 297, 75, 1215, 153, 77, 315, 81, 165, 675, 85, 171, 87, 175, 351, 91, 729, 93, 375, 189, 95, 195
Offset: 1

Views

Author

Friedjof Tellkamp, Jul 13 2024

Keywords

Comments

r(n) = a(n)/A374604(n).
r(n) is never an integer.
A374074(n)/2^(bigomega(A374074(n))-1) is a subsequence of r(n).
Conjecture: It appears that Pi*r(n) + sqrt(n) ~~ A002410(n), where ‘~~’ means ‘close to’. The relative error is less than +-0.001 for n ranging from 100000 to 400000.

Examples

			k cannot be 1 or prime as this does not satisfy 1 < bigomega(k).
For i = 1, k is an odd composite number, resulting in (unsorted) k/d: 9/2, 15/2, 21/2, 25/2, 27/4, 27/2, ... , 81/8, 81/4, 81/2, ... .
For i = 2, k is coprime to 2 and to 3, resulting in: 625/9, 875/9, 1225/9, ... , 15625/81, 15625/9, ... .
For i = 3, k is coprime to 2, to 3 and to 5, resulting in: 7^6/4^3, (11*7^5)/4^3, ... , 7^9/4^6, ... .
For i = 4 ... .
r(n) is the sorted union of the above subsequences.
		

Crossrefs

Cf. A001222, A002410, A374074, A374604 (denominators).

Programs

  • Mathematica
    zmax = 200; fi[id_, z_] := (irat = (id + 2)/(id + 1); ub = z/irat^id; parr = Select[Prime[Range[id + 1, PrimePi[z]]], # <= ub &]; rat = Select[Union[Flatten[Outer[Times, parr, parr]]]/(id + 1), # <= z &];
    Do[rat = Select[Union[Flatten[Outer[Times, rat, parr]]], # <= z &], id - 1];
    While[ub >= irat^id, ub /= irat; parr = Select[parr, # <= ub &]; rat = Select[Union[rat, Flatten[Outer[Times, rat, parr/(id + 1)]]], # <= z &]];
    iw = 1; While[iw <= Length[rat], If[Denominator[rat[[iw]]] >= (id + 1)^2 && (id + 1) rat[[iw]] <= z, AppendTo[rat, (id + 1) rat[[iw]]]]; iw++]; (*append multiples of k/d*)
    rat = Select[rat, Mod[PrimeOmega[Numerator[#]], id] == 0 && Mod[PrimeOmega[Denominator[#]], id] == 0 &]; (*remove elements != 0 mod i*)
    Return[Union[rat]]; ); getimax[zi_] := (im = 1; While[Prime[im + 1]^(2 im)/(im + 1)^im <= zi, im++]; Return[Max[1, im - 1]]); (*1 for z<625/9, 2 for z<7^6/4^3, ...*)
    rrtn = {}; imax = getimax[zmax]; For[i = 1, i <= imax, i++, rrtn = Union[rrtn, fi[i, zmax]]];
    a = Numerator[rrtn]
    Denominator[rrtn]; (*A374604*)