This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374637 #9 Jul 24 2024 09:21:08 %S A374637 1,0,1,0,1,1,0,2,0,2,0,3,2,1,2,0,5,4,3,1,3,0,7,10,7,3,1,4,0,11,19,14, %T A374637 9,4,2,5,0,15,39,27,22,10,7,2,6,0,22,69,59,48,24,15,8,3,8,0,30,125, %U A374637 117,104,56,38,19,10,3,10,0,42,211,241,215,132,80,49,25,12,5,12 %N A374637 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly increasing runs sum to k. %C A374637 The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each. %H A374637 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %e A374637 Triangle begins: %e A374637 1 %e A374637 0 1 %e A374637 0 1 1 %e A374637 0 2 0 2 %e A374637 0 3 2 1 2 %e A374637 0 5 4 3 1 3 %e A374637 0 7 10 7 3 1 4 %e A374637 0 11 19 14 9 4 2 5 %e A374637 0 15 39 27 22 10 7 2 6 %e A374637 0 22 69 59 48 24 15 8 3 8 %e A374637 0 30 125 117 104 56 38 19 10 3 10 %e A374637 0 42 211 241 215 132 80 49 25 12 5 12 %e A374637 0 56 354 473 445 296 186 109 61 31 17 5 15 %e A374637 0 77 571 917 896 665 409 258 139 78 41 20 7 18 %e A374637 Row n = 6 counts the following compositions: %e A374637 . (15) (24) (33) (312) (411) (6) %e A374637 (114) (141) (231) (3111) (51) %e A374637 (123) (1311) (213) (2121) (42) %e A374637 (1113) (1131) (132) (321) %e A374637 (1122) (222) (2211) %e A374637 (11112) (1221) (2112) %e A374637 (111111) (1212) (21111) %e A374637 (12111) %e A374637 (11211) %e A374637 (11121) %t A374637 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,LessEqual]]==k&]],{n,0,15},{k,0,n}] %Y A374637 Last column n = k is A000009. %Y A374637 Second column k = 2 is A000041. %Y A374637 Row-sums are A011782. %Y A374637 For length instead of sum we have A238343. %Y A374637 The corresponding rank statistic is A374630, row-sums of A374629. %Y A374637 Types of runs (instead of weakly increasing): %Y A374637 - For leaders of constant runs we have A373949. %Y A374637 - For leaders of anti-runs we have A374521. %Y A374637 - For leaders of strictly increasing runs we have A374700. %Y A374637 - For leaders of weakly decreasing runs we have A374748. %Y A374637 - For leaders of strictly decreasing runs we have A374766. %Y A374637 Types of run-leaders: %Y A374637 - For strictly decreasing leaders we appear to have A188920. %Y A374637 - For weakly decreasing leaders we appear to have A189076. %Y A374637 - For identical leaders we have A374631. %Y A374637 - For distinct leaders we have A374632, ranks A374768. %Y A374637 - For strictly increasing leaders we have A374634. %Y A374637 - For weakly increasing leaders we have A374635. %Y A374637 A003242 counts anti-run compositions. %Y A374637 A238130, A238279, A333755 count compositions by number of runs. %Y A374637 A274174 counts contiguous compositions, ranks A374249. %Y A374637 A335456 counts patterns matched by compositions. %Y A374637 A335548 counts non-contiguous compositions, ranks A374253. %Y A374637 Cf. A106356, A124766, A261982, A333213, A374251, A374518, A374687, A374761. %K A374637 nonn,tabl %O A374637 0,8 %A A374637 _Gus Wiseman_, Jul 23 2024