This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374641 #37 May 27 2025 07:11:47
%S A374641 1,0,5,3,6,0,5,1,5,6,5,7,8,2,6,3,0,1,2,2,7,5,0,0,9,8,0,8,3,9,3,1,2,7,
%T A374641 9,8,3,0,6,1,2,0,3,7,2,9,8,3,2,7,4,0,7,2,5,6,3,9,3,9,2,3,3,6,9,2,5,8,
%U A374641 4,0,2,3,2,4,0,1,3,4,5,4,6,4,8,8,7,6,5,6,9,5
%N A374641 Decimal expansion of log(9/10), negated.
%C A374641 Bailey et al. (1997) use Li_1(1/10) (see Formula section) to compute the ten billionth digit of this constant.
%C A374641 Bailey and Crandall (2001), p. 185, present this constant as an example of an irrational number that, provided their "Hypothesis A" (p. 176) is true, is normal to base 10.
%C A374641 Also decimal expansion of log(10/9). - _Charles R Greathouse IV_, Jul 17 2024
%H A374641 Paolo Xausa, <a href="/A374641/b374641.txt">Table of n, a(n) for n = 0..10000</a>
%H A374641 David Bailey, Peter Borwein, and Simon Plouffe, <a href="https://www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00856-9/S0025-5718-97-00856-9.pdf">On the Rapid Computation of Various Polylogarithmic Constants</a>, Mathematics of Computation, Vol. 66, No. 218, April 1997, pp. 903-913.
%H A374641 David H. Bailey and Richard E. Crandall, <a href="https://doi.org/10.1080/10586458.2001.10504441">On the Random Character of Fundamental Constant Expansions</a>, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (<a href="https://www.davidhbailey.com/dhbpapers/baicran.pdf">preprint draft</a>).
%H A374641 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>.
%H A374641 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polylogarithm">Polylogarithm</a>.
%H A374641 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A374641 Equals Li_1(1/10) = Sum_{k >= 1} 1/(k*10^k), where Li_m(z) is the polylogarithm function. See Bailey et al. (1997), p. 909 and Bailey and Crandall (2001), p. 185.
%F A374641 Equals Integral_{x=0..1} (x^(1/3) - x^(1/5))/log(x) dx. - _Kritsada Moomuang_, May 27 2025
%e A374641 0.105360515657826301227500980839312798306120372983...
%t A374641 First[RealDigits[Log[9/10], 10, 100]]
%o A374641 (PARI) -log(.9) \\ _Charles R Greathouse IV_, Jul 17 2024
%Y A374641 Cf. A126431, A374642, A374643, A374644.
%K A374641 nonn,cons
%O A374641 0,3
%A A374641 _Paolo Xausa_, Jul 15 2024