This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374644 #17 Jul 19 2024 14:32:43 %S A374644 1,2,8,9,3,1,1,6,6,4,6,5,9,2,9,6,4,8,2,2,5,7,4,9,5,7,4,1,4,2,7,9,1,7, %T A374644 9,8,4,0,0,8,9,6,5,9,9,8,4,1,6,9,0,7,6,0,9,6,5,5,4,2,8,6,3,3,7,2,3,9, %U A374644 7,7,7,9,4,2,0,8,3,3,2,1,5,3,5,9,2,9,8,9,6,6 %N A374644 Decimal expansion of 24*Li_3(1/2), where Li_m(z) is the polylogarithm function. %H A374644 Paolo Xausa, <a href="/A374644/b374644.txt">Table of n, a(n) for n = 2..10000</a> %H A374644 David H. Bailey and Richard E. Crandall, <a href="https://doi.org/10.1080/10586458.2001.10504441">On the Random Character of Fundamental Constant Expansions</a>, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (<a href="https://www.davidhbailey.com/dhbpapers/baicran.pdf">preprint draft</a>). %H A374644 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>. %H A374644 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polylogarithm">Polylogarithm</a>. %F A374644 Equals 24*A099217. %F A374644 Equals 4*log(2)^3 + 21*zeta(3) - 2*Pi^2*log(2) = 4*A002162^3 + 21*A002117 - 2*A352769 = 24*Sum_{k >= 1} 1/((2^k)*(k^3)). See Bailey and Crandall (2001), p. 184. %e A374644 12.893116646592964822574957414279179840089659984... %t A374644 First[RealDigits[24*PolyLog[3, 1/2], 10, 100]] %Y A374644 Cf. A002117, A002162, A002388, A099217, A352769, A374641, A374642, A374643. %K A374644 nonn,cons %O A374644 2,2 %A A374644 _Paolo Xausa_, Jul 15 2024