A374646 Paradiddle version of Thue-Morse sequence.
1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1
Offset: 0
Examples
k = 0: Sequence starts at its simplest form; 1. ----------------------------------------------- k = 1: The 1 of the initial sequence expands following the morphism rules, where 1 -> {1, 0, 1, 1} and 0 -> {0, 1, 0, 0}, resulting in; 1, 0, 1, 1. ----------------------------------------------- k = 2: Each element of the initial sequence expands following the morphism rules, where 1 -> {1, 0, 1, 1} and 0 -> {0, 1, 0, 0}; 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1. ----------------------------------------------- k = 3: The expansion is applied recursively, giving: 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1.
Links
Programs
-
Mathematica
SubstitutionSystem[{1 -> {1, 0, 1, 1}, 0 -> {0, 1, 0, 0}}, {1}, {4}] // Flatten
-
PARI
first(n,v=[1])=if(n>4*#v, v=first((n+3)\4)); my(u=List()); for(i=1,#v-1, listput(u,v[i]); listput(u,1-v[i]); listput(u,v[i]); listput(u,v[i])); my(t=vector(n-#u,i,if(i==2,1-v[#v],v[#v]))); for(j=1,#t, listput(u,t[j])); Vec(u) \\ Charles R Greathouse IV, Jul 31 2024
Formula
a(n) = A160381(n)+1 mod 2. - Kevin Ryde, Dec 28 2024
Comments