Original entry on oeis.org
1, 2, 8, 40, 320, 3840, 72960, 2188800, 105062400, 8089804800, 1003135795200, 200627159040000, 64802572369920000, 33826942777098240000, 28549939703870914560000, 38970667695783798374400000, 86047234272290626810675200000, 307360720820622118967731814400000
Offset: 0
-
w[n_] := Product[LucasL[k] + 1, {k, 0, n}]
(1/3) Table[w[n], {n, 0, 20}]
A374656
a(n) = Product_{k=0..n} L(k)+2, where L=A000032 (Lucas numbers).
Original entry on oeis.org
4, 12, 60, 360, 3240, 42120, 842400, 26114400, 1279605600, 99809236800, 12476154600000, 2507707074600000, 812497092170400000, 424935979205119200000, 359070902428325724000000, 490490852717092938984000000, 1083494293652058302215656000000
Offset: 0
-
w[n_] := Product[LucasL[k] + 2, {k, 0, n}]
Table[w[n], {n, 0, 20}]
Original entry on oeis.org
1, 5, 35, 280, 3080, 46200, 1016400, 33541200, 1710601200, 136848096000, 17379708192000, 3528080762976000, 1150154328730176000, 603831022583342400000, 511444876128091012800000, 699656590543228505510400000, 1546940721691078225683494400000
Offset: 0
-
w[n_] := Product[LucasL[k] + 4, {k, 0, n}]
(1/6) Table[w[n], {n, 0, 20}]
Original entry on oeis.org
1, 3, 15, 90, 810, 10530, 210600, 6528600, 319901400, 24952309200, 3119038650000, 626926768650000, 203124273042600000, 106233994801279800000, 89767725607081431000000, 122622713179273234746000000, 270873573413014575553914000000
Offset: 0
-
w[n_] := Product[LucasL[k] + 2, {k, 0, n}]
(1/4) Table[w[n], {n, 0, 20}]
A374658
a(n) = Product_{k=0..n} L(k)+3, where L=A000032 (Lucas numbers).
Original entry on oeis.org
5, 20, 120, 840, 8400, 117600, 2469600, 79027200, 3951360000, 312157440000, 39331837440000, 7945031162880000, 2582135127936000000, 1353038807038464000000, 1144670830754540544000000, 1564765025641456923648000000, 3458130706667619801262080000000
Offset: 0
-
w[n_] := Product[LucasL[k] + 3, {k, 0, n}]
Table[w[n], {n, 0, 20}]
Original entry on oeis.org
1, 4, 24, 168, 1680, 23520, 493920, 15805440, 790272000, 62431488000, 7866367488000, 1589006232576000, 516427025587200000, 270607761407692800000, 228934166150908108800000, 312953005128291384729600000, 691626141333523960252416000000
Offset: 0
-
w[n_] := Product[LucasL[k] + 3, {k, 0, n}]
(1/5) Table[w[n], {n, 0, 20}]
A374660
a(n) = Product_{k=0..n+1} L(k)+4, where L=A000032 (Lucas numbers).
Original entry on oeis.org
6, 30, 210, 1680, 18480, 277200, 6098400, 201247200, 10263607200, 821088576000, 104278249152000, 21168484577856000, 6900925972381056000, 3622986135500054400000, 3068669256768546076800000, 4197939543259371033062400000, 9281644330146469354100966400000
Offset: 0
-
w[n_] := Product[LucasL[k] + 4, {k, 0, n}]
Table[w[n], {n, 0, 20}]
A374857
Obverse convolution (n)**(Fibonacci(n)); see Comments.
Original entry on oeis.org
0, 1, 4, 36, 432, 8000, 216000, 8668296, 516311040, 46066268160, 6197083200000, 1266665976576000, 396044443339776000, 190620194701725734400, 142017680690039344619520, 164583068009095149120000000, 297947499870194922871259136000
Offset: 0
-
s[n_] := n; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[u[n], {n, 0, 20}]
Showing 1-8 of 8 results.
Comments