This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374663 #50 Jan 09 2025 15:03:36 %S A374663 2,2,2,4,10,201,34458,1212060151,1305857607493406801, %T A374663 1534737681943564047120326770001682121, %U A374663 2141290683979549415450148346297540185977813099483710032048213090481251382 %N A374663 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (k*a(k)) < 1. %C A374663 The harmonic series, Sum_{k > 0} 1/k, diverges. We divide each of its terms in such a way as to have a series bounded by 1. %D A374663 Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024. %H A374663 N. J. A. Sloane, <a href="/A374663/b374663.txt">Table of n, a(n) for n = 1..14</a> %H A374663 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence] %F A374663 The ratios a(n)^2/a(n+1) are very close to the values 2, 2, 1, 8/5, 1/2, 7/6, 48/49, 9/8, 10/9, 11/10, 24/11^2, 13/12, 56/13^2, ... So it seems that often (but not always), a(n+1) is very close to (n/(n+1))*a(n)^2. - _N. J. A. Sloane_, Sep 08 2024 %e A374663 The initial terms, alongside the corresponding sums, are: %e A374663 n a(n) Sum_{k=1..n} 1/(k*a(k)) %e A374663 - ---------- ----------------------------------------- %e A374663 1 2 1/2 %e A374663 2 2 3/4 %e A374663 3 2 11/12 %e A374663 4 4 47/48 %e A374663 5 10 1199/1200 %e A374663 6 201 241199/241200 %e A374663 7 34458 9696481199/9696481200 %e A374663 8 1212060151 11752718467440661199/11752718467440661200 %e A374663 ... %e A374663 The denominators are in A375516. %p A374663 s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*a(n))) end: %p A374663 a:= proc(n) a(n):= 1+floor(1/((1-s(n-1))*n)) end: %p A374663 seq(a(n), n=1..11); # _Alois P. Heinz_, Oct 18 2024 %t A374663 s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*a[n])]; %t A374663 a[n_] := 1 + Floor[1/((1 - s[n - 1])*n)]; %t A374663 Table[a[n], {n, 1, 11}] (* _Jean-François Alcover_, Jan 09 2025, after _Alois P. Heinz_ *) %o A374663 (PARI) { t = 0; for (n = 1, 11, for (v = ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (v", "); break;););); } %o A374663 (Python) %o A374663 from itertools import count, islice %o A374663 from math import gcd %o A374663 def A374663_gen(): # generator of terms %o A374663 p, q = 0, 1 %o A374663 for k in count(1): %o A374663 yield (m:=q//(k*(q-p))+1) %o A374663 p, q = p*k*m+q, k*m*q %o A374663 p //= (r:=gcd(p,q)) %o A374663 q //= r %o A374663 A374663_list = list(islice(A374663_gen(),11)) # _Chai Wah Wu_, Aug 28 2024 %Y A374663 Cf. A000058, A001008/A002805, A002387, A374983, A375516, A375517. %K A374663 nonn %O A374663 1,1 %A A374663 _Rémy Sigrist_, Aug 04 2024