cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374663 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (k*a(k)) < 1.

This page as a plain text file.
%I A374663 #50 Jan 09 2025 15:03:36
%S A374663 2,2,2,4,10,201,34458,1212060151,1305857607493406801,
%T A374663 1534737681943564047120326770001682121,
%U A374663 2141290683979549415450148346297540185977813099483710032048213090481251382
%N A374663 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (k*a(k)) < 1.
%C A374663 The harmonic series, Sum_{k > 0} 1/k, diverges. We divide each of its terms in such a way as to have a series bounded by 1.
%D A374663 Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
%H A374663 N. J. A. Sloane, <a href="/A374663/b374663.txt">Table of n, a(n) for n = 1..14</a>
%H A374663 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence]
%F A374663 The ratios a(n)^2/a(n+1) are very close to the values 2, 2, 1, 8/5, 1/2, 7/6, 48/49, 9/8, 10/9, 11/10, 24/11^2, 13/12, 56/13^2, ... So it seems that often (but not always), a(n+1) is very close to (n/(n+1))*a(n)^2. - _N. J. A. Sloane_, Sep 08 2024
%e A374663 The initial terms, alongside the corresponding sums, are:
%e A374663   n  a(n)        Sum_{k=1..n} 1/(k*a(k))
%e A374663   -  ----------  -----------------------------------------
%e A374663   1           2  1/2
%e A374663   2           2  3/4
%e A374663   3           2  11/12
%e A374663   4           4  47/48
%e A374663   5          10  1199/1200
%e A374663   6         201  241199/241200
%e A374663   7       34458  9696481199/9696481200
%e A374663   8  1212060151  11752718467440661199/11752718467440661200
%e A374663 ...
%e A374663 The denominators are in A375516.
%p A374663 s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*a(n))) end:
%p A374663 a:= proc(n) a(n):= 1+floor(1/((1-s(n-1))*n)) end:
%p A374663 seq(a(n), n=1..11);  # _Alois P. Heinz_, Oct 18 2024
%t A374663 s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*a[n])];
%t A374663 a[n_] := 1 + Floor[1/((1 - s[n - 1])*n)];
%t A374663 Table[a[n], {n, 1, 11}] (* _Jean-François Alcover_, Jan 09 2025, after _Alois P. Heinz_ *)
%o A374663 (PARI) { t = 0; for (n = 1, 11, for (v = ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (v", "); break;););); }
%o A374663 (Python)
%o A374663 from itertools import count, islice
%o A374663 from math import gcd
%o A374663 def A374663_gen(): # generator of terms
%o A374663     p, q = 0, 1
%o A374663     for k in count(1):
%o A374663         yield (m:=q//(k*(q-p))+1)
%o A374663         p, q = p*k*m+q, k*m*q
%o A374663         p //= (r:=gcd(p,q))
%o A374663         q //= r
%o A374663 A374663_list = list(islice(A374663_gen(),11)) # _Chai Wah Wu_, Aug 28 2024
%Y A374663 Cf. A000058, A001008/A002805, A002387, A374983, A375516, A375517.
%K A374663 nonn
%O A374663 1,1
%A A374663 _Rémy Sigrist_, Aug 04 2024