This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374667 #14 Jul 19 2024 19:23:27 %S A374667 1,3,2,15,10,12,60,40,48,45,780,520,624,585,600,5460,3640,4368,4095, %T A374667 4200,4160,92820,61880,74256,69615,71400,70720,70980,1021020,680680, %U A374667 816816,765765,785400,777920,780780,779688,90870780,60580520,72696624,68153085,69900600,69234880,69489420,69392232,69429360 %N A374667 Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) = c_n * F(k)/F(k+2) where c_n = LCM of F(3), F(4), ... F(n+2) (and F() are the Fibonacci numbers). %F A374667 T(n,k) = A035105(n+2) * A000045(k) / A000045(k+2). %e A374667 Triangle begins: %e A374667 1; %e A374667 3, 2; %e A374667 15, 10, 12; %e A374667 60, 40, 48, 45; %e A374667 780, 520, 624, 585, 600; %e A374667 5460, 3640, 4368, 4095, 4200, 4160; %e A374667 92820, 61880, 74256, 69615, 71400, 70720, 70980; %e A374667 ... %e A374667 Fifth row is 780, 520, 624, 585, 600. These are 1/2, 1/3, 2/5, 3/8, 5/13 of c_5 = 1560. %o A374667 (PARI) row(n)={my(m=lcm(vector(n,k,fibonacci(k+2)))); vector(n, k, fibonacci(k)*m/fibonacci(k+2))} %Y A374667 Cf. A000045, A035105. %K A374667 nonn,tabl %O A374667 1,2 %A A374667 _J. Lowell_, Jul 15 2024