This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374669 #8 Jul 19 2024 19:15:05 %S A374669 23,22,27,132,32,729,192,2112,1792,5632,3072,59392,64512,90112,110592, %T A374669 950272,2260992,3244032,786432,30277632,7340032,23068672,12582912, %U A374669 494927872,1333788672,1375731712,704643072,3892314112,1879048192,37446746112,27380416512,196494753792,30064771072,94489280512 %N A374669 a(n) is the least number with n prime factors (counted with multiplicity) that is the concatenation of two primes. %H A374669 Robert Israel, <a href="/A374669/b374669.txt">Table of n, a(n) for n = 1..1000</a> %e A374669 a(4) = 132 because 132 = 2^2 * 3 * 11 is the product of 4 primes (counted with multiplicity) and is the concatenation of the two primes 13 and 2. %p A374669 cp:= proc(n) local k; %p A374669 if n::even then n mod 10 = 2 and isprime((n-2)/10) %p A374669 elif n mod 5 = 0 then isprime((n-5)/10) %p A374669 else for k from 1 to ilog10(n) do %p A374669 if isprime(n mod 10^k) and isprime(floor(n/10^k)) then return true fi %p A374669 od; %p A374669 false %p A374669 fi %p A374669 end proc: %p A374669 f:= proc(n) uses priqueue; local pq, p, q, T, TP, j, v; %p A374669 initialize(pq); %p A374669 insert([-2^n,2$n],pq); %p A374669 do %p A374669 T:= extract(pq); %p A374669 v:= -T[1]; %p A374669 if cp(v) then return(v) fi; %p A374669 q:= T[-1]; %p A374669 p:= nextprime(q); %p A374669 for j from n+1 to 2 by -1 do %p A374669 if T[j] <> q then break fi; %p A374669 TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)]; %p A374669 insert(TP, pq) %p A374669 od od; %p A374669 end proc: %p A374669 map(f, [$1..30]); %Y A374669 Cf. A001222. Second column of A374376. %K A374669 nonn,base %O A374669 1,1 %A A374669 _Robert Israel_, Jul 15 2024