This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374673 #12 Jul 19 2024 14:31:33 %S A374673 2,8,44,83,4475,75093,164903,59480,1342805 %N A374673 a(n) is the start of the least run of exactly n consecutive positive numbers with an equal value of A177329, or -1 if no such run exists. %C A374673 For n > 1, a(n)! is the start of the least run of successive factorials of positive numbers (i.e., ignoring 0!) with an equal number of infinitary divisors (A037445). %C A374673 a(9) > 320000, if it exists. %e A374673 n | a(n) | A177329(k), k = a(n), a(n)+1, ..., a(n)+n-1 %e A374673 --|--------|------------------------------------------------ %e A374673 1 | 2 | A177329(2) = 1 %e A374673 2 | 8 | A177329(8) = A177329(9) = 6 %e A374673 3 | 44 | A177329(44) = A177329(45) = A177329(46) = 21 %e A374673 4 | 83 | A177329(83) = ... = A177329(86) = 35 %e A374673 5 | 4475 | A177329(4475) = ... A177329(4479) = 923 %e A374673 6 | 75093 | A177329(75093) = ... = A177329(75098) = 10857 %e A374673 7 | 164903 | A177329(164903) = ... = A177329(164909) = 22038 %e A374673 8 | 59480 | A177329(59480) = ... = A177329(59487) = 8814 %t A374673 s[n_] := Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; seq[len_] := Module[{v = Table[0, {len}], w = {0}, c = 0, k = 3, m, s1}, While[c < len, s1 = s[k]; m = Length[w]; If[s1 == w[[m]], AppendTo[w, s1], If[m <= len && v[[m]] == 0, v[[m]] = k-m; c++]; w = {s1}]; k++]; v]; seq[5] %o A374673 (PARI) s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));} %o A374673 lista(len) = {my(v = vector(len), w = [0], c = 0, k = 3, m, s1); while(c < len, s1 = s(k); m = #w; if(s1 == w[m], w = concat(w, s1), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [s1]); k++); v;} %o A374673 (Python) %o A374673 from itertools import count %o A374673 from collections import Counter %o A374673 from sympy import factorint %o A374673 def A374673(n): %o A374673 if n==1: return 2 %o A374673 c, a, l = Counter(), 0, 0 %o A374673 for m in count(2): %o A374673 c += Counter(factorint(m)) %o A374673 b = sum(map(int.bit_count,c.values())) %o A374673 if b==a: %o A374673 l += 1 %o A374673 else: %o A374673 if l==n-1: %o A374673 return m-n %o A374673 l = 0 %o A374673 a = b # _Chai Wah Wu_, Jul 18 2024 %Y A374673 Cf. A177329, A318166, A374671, A374672, A374674. %K A374673 nonn,hard,more %O A374673 1,1 %A A374673 _Amiram Eldar_, Jul 16 2024 %E A374673 a(9) from _Chai Wah Wu_, Jul 18 2024