This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374674 #15 Jul 19 2024 14:31:43 %S A374674 2,5,68,33,709,2313,13251,17961,231881,525323,4172904,7163595 %N A374674 a(n) is the start of the least run of exactly n consecutive positive numbers with strictly decreasing values of A177329, or -1 if no such run exists. %C A374674 For n > 1, a(n)! is the start the least run of successive factorials with strictly decreasing number of infinitary divisors (A037445). %C A374674 a(9) > 170000, if it exists. %e A374674 n | a(n) | A177329(k), k = a(n), a(n)+1, ..., a(n)+n-1 %e A374674 --|-------|------------------------------------------------------ %e A374674 1 | 2 | 1 %e A374674 2 | 5 | 4 > 3 %e A374674 3 | 68 | 31 > 28 > 27 %e A374674 4 | 33 | 21 > 17 > 16 > 15 %e A374674 5 | 709 | 199 > 197 > 195 > 193 > 190 %e A374674 6 | 2313 | 528 > 523 > 519 > 518 > 513 > 508 %e A374674 7 | 13251 | 2355 > 2354 > 2353 > 2351 > 2350 > 2345 > 2343 %e A374674 8 | 17961 | 3060 > 3056 > 3051 > 3049 > 3048 > 3047 > 3044 > 3041 %t A374674 s[n_] := Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; seq[len_] := Module[{v = Table[0, {len}], w = {s[2]}, c = 0, k = 3, m, s1}, While[c < len, s1 = s[k]; m = Length[w]; If[s1 < w[[m]], AppendTo[w, s1], If[m <= len && v[[m]] == 0, v[[m]] = k-m; c++]; w = {s1}]; k++]; v]; seq[5] %o A374674 (PARI) s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));} %o A374674 lista(len) = {my(v = vector(len), w = [s(2)], c = 0, k = 3, m, s1); while(c < len, s1 = s(k); m = #w; if(s1 < w[m], w = concat(w, s1), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [s1]); k++); v;} %o A374674 (Python) %o A374674 from itertools import count %o A374674 from collections import Counter %o A374674 from sympy import factorint %o A374674 def A374674(n): %o A374674 if n==1: return 2 %o A374674 c, a, l = Counter(), 0, 0 %o A374674 for m in count(2): %o A374674 c += Counter(factorint(m)) %o A374674 b = sum(map(int.bit_count,c.values())) %o A374674 if b<a: %o A374674 l += 1 %o A374674 else: %o A374674 if l==n-1: %o A374674 return m-n %o A374674 l = 0 %o A374674 a = b # _Chai Wah Wu_, Jul 18 2024 %Y A374674 Cf. A037445, A177329, A374671, A374672, A374673. %K A374674 nonn,hard,more %O A374674 1,1 %A A374674 _Amiram Eldar_, Jul 16 2024 %E A374674 a(9)-a(12) from _Chai Wah Wu_, Jul 18 2024