cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374683 Irregular triangle read by rows where row n lists the leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 3, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so row 1234567 is (3,2,1,2,1,1,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly increasing runs begin:
   0:      () -> ()         15: (1,1,1,1) -> (1,1,1,1)
   1:     (1) -> (1)        16:       (5) -> (5)
   2:     (2) -> (2)        17:     (4,1) -> (4,1)
   3:   (1,1) -> (1,1)      18:     (3,2) -> (3,2)
   4:     (3) -> (3)        19:   (3,1,1) -> (3,1,1)
   5:   (2,1) -> (2,1)      20:     (2,3) -> (2)
   6:   (1,2) -> (1)        21:   (2,2,1) -> (2,2,1)
   7: (1,1,1) -> (1,1,1)    22:   (2,1,2) -> (2,1)
   8:     (4) -> (4)        23: (2,1,1,1) -> (2,1,1,1)
   9:   (3,1) -> (3,1)      24:     (1,4) -> (1)
  10:   (2,2) -> (2,2)      25:   (1,3,1) -> (1,1)
  11: (2,1,1) -> (2,1,1)    26:   (1,2,2) -> (1,2)
  12:   (1,3) -> (1)        27: (1,2,1,1) -> (1,1,1)
  13: (1,2,1) -> (1,1)      28:   (1,1,3) -> (1,1)
  14: (1,1,2) -> (1,1)      29: (1,1,2,1) -> (1,1,1)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124768.
Other types of runs: A374251, A374515, A374740.
The weak version is A374629, sum A374630, length A124766.
Row-sums are A374684.
Positions of identical rows are A374685, counted by A374686.
Positions of distinct (strict) rows are A374698, counted by A374687.
The opposite version is A374757, sum A374758, length A124769.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124767, A333381.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],Less],{n,0,100}]