A374683 Irregular triangle read by rows where row n lists the leaders of strictly increasing runs in the n-th composition in standard order.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 3, 1, 1, 1
Offset: 0
Examples
The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so row 1234567 is (3,2,1,2,1,1,1,1). The nonnegative integers, corresponding compositions, and leaders of strictly increasing runs begin: 0: () -> () 15: (1,1,1,1) -> (1,1,1,1) 1: (1) -> (1) 16: (5) -> (5) 2: (2) -> (2) 17: (4,1) -> (4,1) 3: (1,1) -> (1,1) 18: (3,2) -> (3,2) 4: (3) -> (3) 19: (3,1,1) -> (3,1,1) 5: (2,1) -> (2,1) 20: (2,3) -> (2) 6: (1,2) -> (1) 21: (2,2,1) -> (2,2,1) 7: (1,1,1) -> (1,1,1) 22: (2,1,2) -> (2,1) 8: (4) -> (4) 23: (2,1,1,1) -> (2,1,1,1) 9: (3,1) -> (3,1) 24: (1,4) -> (1) 10: (2,2) -> (2,2) 25: (1,3,1) -> (1,1) 11: (2,1,1) -> (2,1,1) 26: (1,2,2) -> (1,2) 12: (1,3) -> (1) 27: (1,2,1,1) -> (1,1,1) 13: (1,2,1) -> (1,1) 28: (1,1,3) -> (1,1) 14: (1,1,2) -> (1,1) 29: (1,1,2,1) -> (1,1,1)
Links
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Table[First/@Split[stc[n],Less],{n,0,100}]
Comments