This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374687 #11 Feb 14 2025 01:14:25 %S A374687 1,1,1,3,3,7,11,15,27,45,65,101,161,251,381,573,865,1321,1975,2965, %T A374687 4387,6467,9579,14091,20669,30135,43869,63531,91831,132575,190567, %U A374687 273209,390659,557069,792371,1124381,1591977,2249029,3169993,4458163,6256201,8762251,12246541 %N A374687 Number of integer compositions of n whose leaders of strictly increasing runs are distinct. %C A374687 The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each. %H A374687 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %e A374687 The a(0) = 1 through a(7) = 15 compositions: %e A374687 () (1) (2) (3) (4) (5) (6) (7) %e A374687 (12) (13) (14) (15) (16) %e A374687 (21) (31) (23) (24) (25) %e A374687 (32) (42) (34) %e A374687 (41) (51) (43) %e A374687 (122) (123) (52) %e A374687 (212) (132) (61) %e A374687 (213) (124) %e A374687 (231) (133) %e A374687 (312) (142) %e A374687 (321) (214) %e A374687 (241) %e A374687 (313) %e A374687 (412) %e A374687 (421) %t A374687 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,Less]&]],{n,0,15}] %o A374687 (PARI) dfs(m, r, v) = 1 + sum(s=1, min(m, r), if(!setsearch(v, s), dfs(m-s, s, setunion(v, [s]))*x^s + sum(t=s+1, m-s, dfs(m-s-t, t, setunion(v, [s]))*x^(s+t)*prod(i=s+1, t-1, 1+x^i)))); %o A374687 lista(nn) = Vec(dfs(nn, nn, []) + O(x^(1+nn))); \\ _Jinyuan Wang_, Feb 13 2025 %Y A374687 Ranked by A374698. %Y A374687 Types of runs (instead of strictly increasing): %Y A374687 - For leaders of identical runs we have A274174 for n > 0, ranks A374249. %Y A374687 - For leaders of anti-runs we have A374518, ranks A374638. %Y A374687 - For leaders of weakly increasing runs we have A374632, ranks A374768. %Y A374687 - For leaders of weakly decreasing runs we have A374743, ranks A374701. %Y A374687 - For leaders of strictly decreasing runs we have A374761, ranks A374767. %Y A374687 Types of run-leaders (instead of distinct): %Y A374687 - For identical leaders we have A374686, ranks A374685. %Y A374687 - For strictly increasing leaders we have A374688. %Y A374687 - For strictly decreasing leaders we have A374689. %Y A374687 - For weakly increasing leaders we have A374690. %Y A374687 - For weakly decreasing leaders we have A374697. %Y A374687 A003242 counts anti-run compositions, ranks A333489. %Y A374687 A011782 counts compositions. %Y A374687 A238130, A238279, A333755 count compositions by number of runs. %Y A374687 A335456 counts patterns matched by compositions. %Y A374687 A373949 counts compositions by run-compressed sum, opposite A373951. %Y A374687 A374683 lists leaders of strictly increasing runs of standard compositions. %Y A374687 A374700 counts compositions by sum of leaders of strictly increasing runs. %Y A374687 Cf. A000009, A106356, A188920, A189076, A238343, A333213, A335548, A374629, A374634, A374635. %K A374687 nonn %O A374687 0,4 %A A374687 _Gus Wiseman_, Jul 27 2024 %E A374687 More terms from _Jinyuan Wang_, Feb 13 2025