cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374699 Number of integer compositions of n whose leaders of maximal anti-runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 14, 34, 78, 180, 407, 907, 2000, 4364, 9448, 20323, 43448, 92400, 195604, 412355, 866085, 1813035, 3783895, 7875552
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 14 compositions:
  .  .  .  .  .  (122)  (1122)  (133)    (233)
                        (1221)  (1222)   (1133)
                                (11122)  (1223)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (11222)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (21122)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

The complement is counted by A374682.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A056823.
- For leaders of weakly increasing runs we have A374636, complement A189076?
- For leaders of strictly increasing runs: A375135, complement A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
- For distinct leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
- For weakly increasing leaders we have complement A374681.
- For strictly increasing leaders we have complement complement A374679.
- For strictly decreasing leaders we have complement A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A333381 counts maximal anti-runs in standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]