cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374700 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of strictly increasing runs sum to k.

This page as a plain text file.
%I A374700 #5 Jul 28 2024 10:39:01
%S A374700 1,0,1,0,0,2,0,1,0,3,0,1,2,0,5,0,1,3,5,0,7,0,2,4,6,9,0,11,0,2,7,10,13,
%T A374700 17,0,15,0,3,8,20,23,24,28,0,22,0,3,14,26,47,47,42,47,0,30,0,5,17,45,
%U A374700 66,101,92,71,73,0,42,0,5,27,61,124,154,201,166,116,114,0,56
%N A374700 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of strictly increasing runs sum to k.
%C A374700 The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
%H A374700 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>.
%e A374700 Triangle begins:
%e A374700    1
%e A374700    0   1
%e A374700    0   0   2
%e A374700    0   1   0   3
%e A374700    0   1   2   0   5
%e A374700    0   1   3   5   0   7
%e A374700    0   2   4   6   9   0  11
%e A374700    0   2   7  10  13  17   0  15
%e A374700    0   3   8  20  23  24  28   0  22
%e A374700    0   3  14  26  47  47  42  47   0  30
%e A374700    0   5  17  45  66 101  92  71  73   0  42
%e A374700    0   5  27  61 124 154 201 166 116 114   0  56
%e A374700    0   7  33 101 181 300 327 379 291 182 170   0  77
%e A374700    0   8  48 138 307 467 668 656 680 488 282 253   0 101
%e A374700 Row n = 6 counts the following compositions:
%e A374700   .  (15)   (24)    (231)   (312)    .  (6)
%e A374700      (123)  (141)   (213)   (2121)      (51)
%e A374700             (114)   (132)   (2112)      (42)
%e A374700             (1212)  (1311)  (1221)      (411)
%e A374700                     (1131)  (1122)      (33)
%e A374700                     (1113)  (12111)     (321)
%e A374700                             (11211)     (3111)
%e A374700                             (11121)     (222)
%e A374700                             (11112)     (2211)
%e A374700                                         (21111)
%e A374700                                         (111111)
%t A374700 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Less]]==k&]],{n,0,15},{k,0,n}]
%Y A374700 Column n = k is A000041.
%Y A374700 Column k = 1 is A096765.
%Y A374700 Column k = 2 is A374705.
%Y A374700 Row-sums are A011782.
%Y A374700 For length instead of sum we have A333213.
%Y A374700 Leaders of strictly increasing runs in standard compositions are A374683.
%Y A374700 The corresponding rank statistic is A374684.
%Y A374700 Other types of runs (instead of strictly increasing):
%Y A374700 - For leaders of constant runs we have A373949.
%Y A374700 - For leaders of anti-runs we have A374521.
%Y A374700 - For leaders of weakly increasing runs we have A374637.
%Y A374700 - For leaders of weakly decreasing runs we have A374748.
%Y A374700 - For leaders of strictly decreasing runs we have A374766.
%Y A374700 A003242 counts anti-run compositions.
%Y A374700 A238130, A238279, A333755 count compositions by number of runs.
%Y A374700 A274174 counts contiguous compositions, ranks A374249.
%Y A374700 A335548 counts non-contiguous compositions, ranks A374253.
%Y A374700 Cf. A106356, A124766, A238343, A261982, A374251, A374702, A374703.
%K A374700 nonn,tabl
%O A374700 0,6
%A A374700 _Gus Wiseman_, Jul 27 2024