This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374700 #5 Jul 28 2024 10:39:01 %S A374700 1,0,1,0,0,2,0,1,0,3,0,1,2,0,5,0,1,3,5,0,7,0,2,4,6,9,0,11,0,2,7,10,13, %T A374700 17,0,15,0,3,8,20,23,24,28,0,22,0,3,14,26,47,47,42,47,0,30,0,5,17,45, %U A374700 66,101,92,71,73,0,42,0,5,27,61,124,154,201,166,116,114,0,56 %N A374700 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of strictly increasing runs sum to k. %C A374700 The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each. %H A374700 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %e A374700 Triangle begins: %e A374700 1 %e A374700 0 1 %e A374700 0 0 2 %e A374700 0 1 0 3 %e A374700 0 1 2 0 5 %e A374700 0 1 3 5 0 7 %e A374700 0 2 4 6 9 0 11 %e A374700 0 2 7 10 13 17 0 15 %e A374700 0 3 8 20 23 24 28 0 22 %e A374700 0 3 14 26 47 47 42 47 0 30 %e A374700 0 5 17 45 66 101 92 71 73 0 42 %e A374700 0 5 27 61 124 154 201 166 116 114 0 56 %e A374700 0 7 33 101 181 300 327 379 291 182 170 0 77 %e A374700 0 8 48 138 307 467 668 656 680 488 282 253 0 101 %e A374700 Row n = 6 counts the following compositions: %e A374700 . (15) (24) (231) (312) . (6) %e A374700 (123) (141) (213) (2121) (51) %e A374700 (114) (132) (2112) (42) %e A374700 (1212) (1311) (1221) (411) %e A374700 (1131) (1122) (33) %e A374700 (1113) (12111) (321) %e A374700 (11211) (3111) %e A374700 (11121) (222) %e A374700 (11112) (2211) %e A374700 (21111) %e A374700 (111111) %t A374700 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Less]]==k&]],{n,0,15},{k,0,n}] %Y A374700 Column n = k is A000041. %Y A374700 Column k = 1 is A096765. %Y A374700 Column k = 2 is A374705. %Y A374700 Row-sums are A011782. %Y A374700 For length instead of sum we have A333213. %Y A374700 Leaders of strictly increasing runs in standard compositions are A374683. %Y A374700 The corresponding rank statistic is A374684. %Y A374700 Other types of runs (instead of strictly increasing): %Y A374700 - For leaders of constant runs we have A373949. %Y A374700 - For leaders of anti-runs we have A374521. %Y A374700 - For leaders of weakly increasing runs we have A374637. %Y A374700 - For leaders of weakly decreasing runs we have A374748. %Y A374700 - For leaders of strictly decreasing runs we have A374766. %Y A374700 A003242 counts anti-run compositions. %Y A374700 A238130, A238279, A333755 count compositions by number of runs. %Y A374700 A274174 counts contiguous compositions, ranks A374249. %Y A374700 A335548 counts non-contiguous compositions, ranks A374253. %Y A374700 Cf. A106356, A124766, A238343, A261982, A374251, A374702, A374703. %K A374700 nonn,tabl %O A374700 0,6 %A A374700 _Gus Wiseman_, Jul 27 2024