A374701 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are distinct.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1
Keywords
Examples
The maximal weakly decreasing subsequences of the 1257th composition in standard order are ((3,1,1),(2),(3,1)), with leaders (3,2,3), so 1257 is not in the sequence.
Links
Crossrefs
Compositions of this type are counted by A374743.
Other types of runs and their counts: A374249 (A274174), A374638 (A374518), A374698 (A374687), A374767 (A374761), A374768 (A374632).
A011782 counts compositions.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Parts are listed by A066099.
- Run-length transform is A333627.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],UnsameQ@@First/@Split[stc[#],GreaterEqual]&] (* Gus Wiseman, Jul 24 2024 *)
Comments