cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374703 Number of integer compositions of 2n whose leaders of weakly decreasing runs sum to n. Center n = 2*k of the triangle A374748.

This page as a plain text file.
%I A374703 #5 Aug 13 2024 09:10:09
%S A374703 1,1,2,9,24,96,343,1242,4700,17352,65995
%N A374703 Number of integer compositions of 2n whose leaders of weakly decreasing runs sum to n. Center n = 2*k of the triangle A374748.
%C A374703 The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
%H A374703 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>.
%e A374703 The a(0) = 1 through a(4) = 24 compositions:
%e A374703   ()  (11)  (22)   (33)     (44)
%e A374703             (211)  (321)    (422)
%e A374703                    (1122)   (431)
%e A374703                    (1221)   (1133)
%e A374703                    (3111)   (1322)
%e A374703                    (11112)  (1331)
%e A374703                    (11121)  (4211)
%e A374703                    (11211)  (11132)
%e A374703                    (12111)  (11321)
%e A374703                             (13211)
%e A374703                             (21122)
%e A374703                             (21221)
%e A374703                             (22112)
%e A374703                             (22121)
%e A374703                             (41111)
%e A374703                             (111113)
%e A374703                             (111131)
%e A374703                             (111311)
%e A374703                             (113111)
%e A374703                             (131111)
%e A374703                             (211112)
%e A374703                             (211121)
%e A374703                             (211211)
%e A374703                             (212111)
%t A374703 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[2n],Total[First/@Split[#,GreaterEqual]]==n&]],{n,0,8}]
%Y A374703 For reversed partitions we have A364910.
%Y A374703 For strictly decreasing runs we have the center of A374700.
%Y A374703 Center n = 2*k of the triangle A374748.
%Y A374703 A003242 counts anti-run compositions.
%Y A374703 A011782 counts integer compositions.
%Y A374703 A238130, A238279, A333755 count compositions by number of runs.
%Y A374703 A274174 counts contiguous compositions, ranks A374249.
%Y A374703 Cf. A000041, A004526, A106356, A124766, A188900, A238343, A261982, A333213.
%K A374703 nonn,more
%O A374703 0,3
%A A374703 _Gus Wiseman_, Aug 12 2024