This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374704 #9 Dec 29 2024 18:18:39 %S A374704 1,1,3,6,15,31,77,171,410,957,2275,5370,12795,30366,72307,172071, %T A374704 409875,976155,2325804,5541230,13204161,31464226,74980838,178684715, %U A374704 425830008,1014816979,2418489344,5763712776,13736075563,32735874251,78016456122,185929792353,443110675075 %N A374704 Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical. %H A374704 Andrew Howroyd, <a href="/A374704/b374704.txt">Table of n, a(n) for n = 0..1000</a> %F A374704 G.f.: 1 + Sum_{k>=1} (-1 + 1/(1 - x^k/Product_{j>=k} (1 - x^j))). - _Andrew Howroyd_, Dec 29 2024 %e A374704 The a(0) = 1 through a(4) = 15 ways: %e A374704 () ((1)) ((2)) ((3)) ((4)) %e A374704 ((1,1)) ((1,2)) ((1,3)) %e A374704 ((1),(1)) ((1,1,1)) ((2,2)) %e A374704 ((1),(1,1)) ((1,1,2)) %e A374704 ((1,1),(1)) ((2),(2)) %e A374704 ((1),(1),(1)) ((1,1,1,1)) %e A374704 ((1),(1,2)) %e A374704 ((1,2),(1)) %e A374704 ((1),(1,1,1)) %e A374704 ((1,1),(1,1)) %e A374704 ((1,1,1),(1)) %e A374704 ((1),(1),(1,1)) %e A374704 ((1),(1,1),(1)) %e A374704 ((1,1),(1),(1)) %e A374704 ((1),(1),(1),(1)) %t A374704 Table[Length[Select[Join@@Table[Tuples[IntegerPartitions/@y], {y,Join@@Permutations/@IntegerPartitions[n]}],SameQ@@Min/@#&]],{n,0,15}] %o A374704 (PARI) seq(n) = Vec(1 + sum(k=1, n, -1 + 1/(1 - x^k/prod(j=k, n-k, 1 - x^j, 1 + O(x^(n-k+1)))))) \\ _Andrew Howroyd_, Dec 29 2024 %Y A374704 A variation for weakly increasing lengths is A141199. %Y A374704 For identical sums instead of minima we have A279787. %Y A374704 The case of reversed twice-partitions is A306319, distinct A358830. %Y A374704 For maxima instead of minima, or for unreversed partitions, we have A358905. %Y A374704 The strict case is A374686 (ranks A374685), maxima A374760 (ranks A374759). %Y A374704 A003242 counts anti-run compositions, ranks A333489. %Y A374704 A011782 counts compositions. %Y A374704 A238130, A238279, A333755 count compositions by number of runs. %Y A374704 A274174 counts contiguous compositions, ranks A374249. %Y A374704 A055887 counts sequences of partitions with total sum n. %Y A374704 A281145 counts same-trees. %Y A374704 A319169 counts partitions with constant Omega, ranked by A320324. %Y A374704 A358911 counts compositions with constant Omega, distinct A358912. %Y A374704 Cf. A000041, A063834, A106356, A189076, A238343, A304969, A305551, A319066, A323429, A333213, A358833, A358835. %K A374704 nonn %O A374704 0,3 %A A374704 _Gus Wiseman_, Aug 04 2024 %E A374704 a(16) onwards from _Andrew Howroyd_, Dec 29 2024