cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374704 Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical.

This page as a plain text file.
%I A374704 #9 Dec 29 2024 18:18:39
%S A374704 1,1,3,6,15,31,77,171,410,957,2275,5370,12795,30366,72307,172071,
%T A374704 409875,976155,2325804,5541230,13204161,31464226,74980838,178684715,
%U A374704 425830008,1014816979,2418489344,5763712776,13736075563,32735874251,78016456122,185929792353,443110675075
%N A374704 Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical.
%H A374704 Andrew Howroyd, <a href="/A374704/b374704.txt">Table of n, a(n) for n = 0..1000</a>
%F A374704 G.f.: 1 + Sum_{k>=1} (-1 + 1/(1 - x^k/Product_{j>=k} (1 - x^j))). - _Andrew Howroyd_, Dec 29 2024
%e A374704 The a(0) = 1 through a(4) = 15 ways:
%e A374704   ()  ((1))  ((2))      ((3))          ((4))
%e A374704              ((1,1))    ((1,2))        ((1,3))
%e A374704              ((1),(1))  ((1,1,1))      ((2,2))
%e A374704                         ((1),(1,1))    ((1,1,2))
%e A374704                         ((1,1),(1))    ((2),(2))
%e A374704                         ((1),(1),(1))  ((1,1,1,1))
%e A374704                                        ((1),(1,2))
%e A374704                                        ((1,2),(1))
%e A374704                                        ((1),(1,1,1))
%e A374704                                        ((1,1),(1,1))
%e A374704                                        ((1,1,1),(1))
%e A374704                                        ((1),(1),(1,1))
%e A374704                                        ((1),(1,1),(1))
%e A374704                                        ((1,1),(1),(1))
%e A374704                                        ((1),(1),(1),(1))
%t A374704 Table[Length[Select[Join@@Table[Tuples[IntegerPartitions/@y], {y,Join@@Permutations/@IntegerPartitions[n]}],SameQ@@Min/@#&]],{n,0,15}]
%o A374704 (PARI) seq(n) = Vec(1 + sum(k=1, n, -1 + 1/(1 - x^k/prod(j=k, n-k, 1 - x^j, 1 + O(x^(n-k+1)))))) \\ _Andrew Howroyd_, Dec 29 2024
%Y A374704 A variation for weakly increasing lengths is A141199.
%Y A374704 For identical sums instead of minima we have A279787.
%Y A374704 The case of reversed twice-partitions is A306319, distinct A358830.
%Y A374704 For maxima instead of minima, or for unreversed partitions, we have A358905.
%Y A374704 The strict case is A374686 (ranks A374685), maxima A374760 (ranks A374759).
%Y A374704 A003242 counts anti-run compositions, ranks A333489.
%Y A374704 A011782 counts compositions.
%Y A374704 A238130, A238279, A333755 count compositions by number of runs.
%Y A374704 A274174 counts contiguous compositions, ranks A374249.
%Y A374704 A055887 counts sequences of partitions with total sum n.
%Y A374704 A281145 counts same-trees.
%Y A374704 A319169 counts partitions with constant Omega, ranked by A320324.
%Y A374704 A358911 counts compositions with constant Omega, distinct A358912.
%Y A374704 Cf. A000041, A063834, A106356, A189076, A238343, A304969, A305551, A319066, A323429, A333213, A358833, A358835.
%K A374704 nonn
%O A374704 0,3
%A A374704 _Gus Wiseman_, Aug 04 2024
%E A374704 a(16) onwards from _Andrew Howroyd_, Dec 29 2024