This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374705 #11 Aug 15 2024 02:04:32 %S A374705 0,0,2,0,2,3,4,7,8,14,17,27,33,48,63,84,112,147,191,248,322,409,527, %T A374705 666,845,1062,1336,1666,2079,2579,3190,3936,4842,5933,7259,8854,10768, %U A374705 13074,15826,19120,23048,27728,33279,39879,47686,56916,67818,80667,95777,113552,134396 %N A374705 Number of integer compositions of n whose leaders of maximal strictly increasing runs sum to 2. %C A374705 The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each. %H A374705 Andrew Howroyd, <a href="/A374705/b374705.txt">Table of n, a(n) for n = 0..1000</a> %H A374705 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %F A374705 G.f.: (x*Q(x)/(1 + x))^2 + x^2*Q(x)/((1 + x)*(1 + x^2)), where Q(x) is the g.f. of A000009. - _Andrew Howroyd_, Aug 14 2024 %e A374705 The a(0) = 0 through a(9) = 14 compositions: %e A374705 . . (2) . (112) (23) (24) (25) (26) (27) %e A374705 (11) (121) (113) (114) (115) (116) (117) %e A374705 (131) (141) (151) (161) (171) %e A374705 (1212) (1123) (1124) (234) %e A374705 (1213) (1214) (1125) %e A374705 (1231) (1241) (1134) %e A374705 (1312) (1313) (1215) %e A374705 (1412) (1251) %e A374705 (1314) %e A374705 (1341) %e A374705 (1413) %e A374705 (1512) %e A374705 (12123) %e A374705 (12312) %t A374705 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Less]]==2&]],{n,0,15}] %o A374705 (PARI) seq(n)={my(A=O(x^(n-1)), q=eta(x^2 + A)/eta(x + A)); Vec((q*x/(1 + x))^2 + q*x^2/((1 + x)*(1 + x^2)), -n-1)} \\ _Andrew Howroyd_, Aug 14 2024 %Y A374705 For leaders of weakly decreasing runs we have A004526. %Y A374705 The case of strict compositions is A096749. %Y A374705 For leaders of anti-runs we have column k = 2 of A374521. %Y A374705 Leaders of strictly increasing runs in standard compositions are A374683. %Y A374705 Ranked by positions of 2s in A374684. %Y A374705 Column k = 2 of A374700. %Y A374705 A003242 counts anti-run compositions. %Y A374705 A011782 counts compositions. %Y A374705 A238130, A238279, A333755 count compositions by number of runs. %Y A374705 A274174 counts contiguous compositions, ranks A374249. %Y A374705 Cf. A000009, A096765, A106356, A124766, A238343, A261982, A333213. %K A374705 nonn %O A374705 0,3 %A A374705 _Gus Wiseman_, Aug 12 2024 %E A374705 a(26) onwards from _Andrew Howroyd_, Aug 14 2024