This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374722 #32 Sep 03 2024 00:37:12 %S A374722 1,6,24,120,570,2850,14100,70500,351750,1758750,8790000,43950000, %T A374722 219731250,1098656250,5493187500,27465937500,137329218750, %U A374722 686646093750,3433228125000,17166140625000,85830691406250,429153457031250,2145767226562500,10728836132812500,53644180371093750 %N A374722 Number of nonisomorphic spanning trees of the nC_5-snake with constant distance between cutpoints. %C A374722 a(n) is the number of spanning trees of the cyclic snake formed with n copies of the cycle on 5 vertices. A cyclic snake is a connected graph whose block-cutpoint is a path and all its n blocks are isomorphic to the cycle C_m. %D A374722 Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96. %H A374722 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,-25). %F A374722 a(n) = (3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2)) for n > 1. %F A374722 From _Stefano Spezia_, Jul 23 2024: (Start) %F A374722 G.f.: x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)). %F A374722 E.g.f.: (24 + 10*x - 9*cosh(5*x) - 15*cosh(sqrt(5)*x) - 9*sinh(5*x) - 3*sqrt(5)*sinh(sqrt(5)*x))/50. (End) %e A374722 For n=2, a(2)=6 because there are 6 spanning trees of 2C_5-snake %e A374722 __ __ __ __ __ __ __ __, __ __ __ __|__ __ __, __ __ __ \/__ __ __, %e A374722 __ __ __ %e A374722 __ __ __ __|__ __, __ __ __|__ __, __ __|__ __ %e A374722 | |__ %t A374722 Drop[CoefficientList[Series[x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)),{x,0,30}],x],1] (* _Georg Fischer_, Aug 09 2024 *) %o A374722 (PARI) for(n=1, 30, print1(if(n==1,1,(3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2))),",")) \\ _Georg Fischer_, Aug 09 2024 %Y A374722 Cf. A374721. %K A374722 nonn,easy %O A374722 1,2 %A A374722 _Christian Barrientos_, Jul 17 2024 %E A374722 a(25) corrected by _Georg Fischer_, Aug 09 2024