This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374727 #16 Jul 19 2024 14:36:13 %S A374727 1,1,1,1,7,13,45,91,233,477,1079,2205,4709,10299,22393,52005,125055, %T A374727 310373,799677,2096699,5556681,14806685,39417431,104570549,276027337, %U A374727 724183555,1887993925,4891368373,12595644523,32252683453,82146468813,208225916203,525472131209 %N A374727 Number of n-color complete compositions of n. %C A374727 These are integer compositions whose set of parts covers an initial interval and contains k colors of each part k. %e A374727 a(6) = 13 counts: (1,1,1,1,1,1) and the 12 permutations of parts 1, 1, 2_a, and 2_b. %o A374727 (PARI) %o A374727 colr(x,y)={my(r=y-x+1, v=[x..y], z = vector(r*(r+(1+(x-1)*2))/2), k=1); for(i=1,#v,for(j=1,v[i],z[k]=v[i]; k++)); return(z)} %o A374727 C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(s[^i],N) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)} %o A374727 B_x(N)={my(x='x+O('x^N), j=1, h=0, s=colr(1,j)); while(vecsum(s) <= N, h += C_x(s,N+1); j++;s=colr(1,j)); my(a = Vec(h)); vector(N, i, a[i])} %o A374727 B_x(25) %Y A374727 Cf. A003242, A011782, A107428, A107429, A374147, A374726, A374728. %K A374727 nonn %O A374727 1,5 %A A374727 _John Tyler Rascoe_, Jul 17 2024