A374740 Irregular triangle read by rows where row n lists the leaders of weakly decreasing runs in the n-th composition in standard order.
1, 2, 1, 3, 2, 1, 2, 1, 4, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 5, 1, 4, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 4
Offset: 0
Examples
The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so row 1234567 is (3,2,2,5). The nonnegative integers, corresponding compositions, and leaders of weakly decreasing runs begin: 0: () -> () 15: (1,1,1,1) -> (1) 1: (1) -> (1) 16: (5) -> (5) 2: (2) -> (2) 17: (4,1) -> (4) 3: (1,1) -> (1) 18: (3,2) -> (3) 4: (3) -> (3) 19: (3,1,1) -> (3) 5: (2,1) -> (2) 20: (2,3) -> (2,3) 6: (1,2) -> (1,2) 21: (2,2,1) -> (2) 7: (1,1,1) -> (1) 22: (2,1,2) -> (2,2) 8: (4) -> (4) 23: (2,1,1,1) -> (2) 9: (3,1) -> (3) 24: (1,4) -> (1,4) 10: (2,2) -> (2) 25: (1,3,1) -> (1,3) 11: (2,1,1) -> (2) 26: (1,2,2) -> (1,2) 12: (1,3) -> (1,3) 27: (1,2,1,1) -> (1,2) 13: (1,2,1) -> (1,2) 28: (1,1,3) -> (1,3) 14: (1,1,2) -> (1,2) 29: (1,1,2,1) -> (1,2)
Links
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Table[First/@Split[stc[n],GreaterEqual],{n,0,100}]
Comments