This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374742 #21 Apr 30 2025 09:16:47 %S A374742 1,1,2,3,5,8,13,21,34,54,87,138,220,349,556,881,1403,2229,3551,5653, %T A374742 9019,14387,22988,36739,58785,94100,150765,241658,387617,622002, %U A374742 998658,1604032,2577512,4143243,6662520,10716931,17243904,27753518,44680121,71947123,115880662 %N A374742 Number of integer compositions of n whose leaders of weakly decreasing runs are identical. %C A374742 The weakly decreasing run-leaders of a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each. %H A374742 John Tyler Rascoe, <a href="/A374742/b374742.txt">Table of n, a(n) for n = 0..200</a> %H A374742 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %F A374742 G.f.: 1 + Sum_{i>0} -1 + (1 + x^i/(1 - x^i))/(1 - B(i,x)) where B(i,x) = x^i/(1 - x^i) * Sum_{j=1..i-1} x^j * Product_{k=1..j} (1 - x^k)^(-1). - _John Tyler Rascoe_, Apr 29 2025 %e A374742 The composition (3,1,3,2,1,3,3) has maximal weakly decreasing subsequences ((3,1),(3,2,1),(3,3)), with leaders (3,3,3), so is counted under a(16). %e A374742 The a(0) = 1 through a(6) = 13 compositions: %e A374742 () (1) (2) (3) (4) (5) (6) %e A374742 (11) (21) (22) (32) (33) %e A374742 (111) (31) (41) (42) %e A374742 (211) (212) (51) %e A374742 (1111) (221) (222) %e A374742 (311) (321) %e A374742 (2111) (411) %e A374742 (11111) (2112) %e A374742 (2121) %e A374742 (2211) %e A374742 (3111) %e A374742 (21111) %e A374742 (111111) %t A374742 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}] %o A374742 (PARI) %o A374742 B(i) = x^i/(1-x^i) * sum(j=1,i-1, x^j*prod(k=1,j, (1-x^k)^(-1))) %o A374742 A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N,-1+(1+x^i/(1-x^i))/(1-B(i))))} %o A374742 A_x(30) \\ _John Tyler Rascoe_, Apr 29 2025 %Y A374742 Ranked by A374744 = positions of identical rows in A374740, cf. A374629. %Y A374742 Types of runs (instead of weakly decreasing): %Y A374742 - For leaders of identical runs we have A000005 for n > 0, ranks A272919. %Y A374742 - For leaders of anti-runs we have A374517, ranks A374519. %Y A374742 - For leaders of strictly increasing runs we have A374686, ranks A374685. %Y A374742 - For leaders of weakly increasing runs we have A374631, ranks A374633. %Y A374742 - For leaders of strictly decreasing runs we have A374760, ranks A374759. %Y A374742 Types of run-leaders (instead of identical): %Y A374742 - For strictly decreasing leaders we have A374746. %Y A374742 - For weakly decreasing leaders we have A374747. %Y A374742 - For distinct leaders we have A374743, ranks A374701. %Y A374742 - For weakly increasing leaders we appear to have A188900. %Y A374742 A003242 counts anti-run compositions, ranks A333489. %Y A374742 A011782 counts compositions. %Y A374742 A238130, A238279, A333755 count compositions by number of runs. %Y A374742 A274174 counts contiguous compositions, ranks A374249. %Y A374742 A335456 counts patterns matched by compositions. %Y A374742 A335548 counts non-contiguous compositions, ranks A374253. %Y A374742 A373949 counts compositions by run-compressed sum, opposite A373951. %Y A374742 A374748 counts compositions by sum of leaders of weakly decreasing runs. %Y A374742 Cf. A000009, A106356, A188920, A189076, A238343, A261982, A333213, A374632, A374634, A374635, A374741. %K A374742 nonn %O A374742 0,3 %A A374742 _Gus Wiseman_, Jul 25 2024 %E A374742 a(24)-a(40) from _Alois P. Heinz_, Jul 26 2024