This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374748 #10 Sep 16 2024 08:43:04 %S A374748 1,0,1,0,1,1,0,1,1,2,0,1,2,3,2,0,1,2,6,4,3,0,1,3,9,8,7,4,0,1,3,13,15, %T A374748 16,11,5,0,1,4,17,24,32,28,16,6,0,1,4,23,36,58,58,44,24,8,0,1,5,28,52, %U A374748 96,115,100,71,34,10,0,1,5,35,72,151,203,211,176,109,49,12 %N A374748 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly decreasing runs sum to k. %C A374748 The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each. %H A374748 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %e A374748 Triangle begins: %e A374748 1 %e A374748 0 1 %e A374748 0 1 1 %e A374748 0 1 1 2 %e A374748 0 1 2 3 2 %e A374748 0 1 2 6 4 3 %e A374748 0 1 3 9 8 7 4 %e A374748 0 1 3 13 15 16 11 5 %e A374748 0 1 4 17 24 32 28 16 6 %e A374748 0 1 4 23 36 58 58 44 24 8 %e A374748 0 1 5 28 52 96 115 100 71 34 10 %e A374748 0 1 5 35 72 151 203 211 176 109 49 12 %e A374748 Row n = 6 counts the following compositions: %e A374748 . (111111) (222) (33) (42) (51) (6) %e A374748 (2211) (321) (411) (141) (15) %e A374748 (21111) (3111) (132) (114) (24) %e A374748 (1221) (1311) (312) (123) %e A374748 (1122) (1131) (231) %e A374748 (12111) (1113) (213) %e A374748 (11211) (2121) (1212) %e A374748 (11121) (2112) %e A374748 (11112) %t A374748 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==k&]],{n,0,15},{k,0,n}] %Y A374748 Column n = k is A000009. %Y A374748 Column k = 2 is A004526. %Y A374748 Row-sums are A011782. %Y A374748 For length instead of sum we have A238343. %Y A374748 The opposite rank statistic is A374630, row-sums of A374629. %Y A374748 Column k = 3 is A374702. %Y A374748 The center n = 2k is A374703. %Y A374748 The corresponding rank statistic is A374741 row-sums of A374740. %Y A374748 Types of runs (instead of weakly decreasing): %Y A374748 - For leaders of constant runs we have A373949. %Y A374748 - For leaders of anti-runs we have A374521. %Y A374748 - For leaders of weakly increasing runs we have A374637. %Y A374748 - For leaders of strictly increasing runs we have A374700. %Y A374748 - For leaders of strictly decreasing runs we have A374766. %Y A374748 Types of run-leaders: %Y A374748 - For weakly increasing leaders we appear to have A188900. %Y A374748 - For identical leaders we have A374742, ranks A374744. %Y A374748 - For distinct leaders we have A374743, ranks A374701. %Y A374748 - For strictly decreasing leaders we have A374746. %Y A374748 - For weakly decreasing leaders we have A374747. %Y A374748 A003242 counts anti-run compositions. %Y A374748 A238130, A238279, A333755 count compositions by number of runs. %Y A374748 A274174 counts contiguous compositions, ranks A374249. %Y A374748 A335456 counts patterns matched by compositions. %Y A374748 A335548 counts non-contiguous compositions, ranks A374253. %Y A374748 Cf. A000041, A106356, A124766, A261982, A333213, A374251, A374761. %K A374748 nonn,tabl %O A374748 0,10 %A A374748 _Gus Wiseman_, Jul 26 2024