cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374752 Decimal expansion of phi_4, a limit point of the set of Pisot numbers in (1,2).

This page as a plain text file.
%I A374752 #16 Sep 03 2025 04:28:14
%S A374752 1,9,3,3,1,8,4,9,8,1,8,9,9,5,2,0,4,4,6,7,9,1,4,2,4,0,3,0,3,3,5,6,3,1,
%T A374752 5,8,6,3,7,5,1,8,3,7,8,4,4,7,9,2,5,4,3,9,4,0,1,8,7,6,3,7,3,0,1,8,6,3,
%U A374752 5,2,8,5,7,3,9,9,4,7,1,2,3,5,8,0,7,5,6,7,2,5
%N A374752 Decimal expansion of phi_4, a limit point of the set of Pisot numbers in (1,2).
%H A374752 Paolo Xausa, <a href="/A374752/b374752.txt">Table of n, a(n) for n = 1..10000</a>
%H A374752 Jean-Paul Allouche, Christiane Frougny, and Kevin G. Hare, <a href="https://doi.org/10.1090/S0025-5718-07-01961-8">On Univoque Pisot Numbers</a>, Mathematics of Computation, Vol. 76, No. 259, July 2007, pp. 1639-1660 (<a href="https://doi.org/10.48550/arXiv.math/0610681">arXiv version</a>).
%H A374752 Kevin G. Hare and Nikita Sidorov, <a href="https://doi.org/10.1142/S1793042121500378">Conjugates of Pisot numbers</a>, International Journal of Number Theory, Vol. 17, No. 06 (2021), pp. 1307-1321 (<a href="https://doi.org/10.48550/arXiv.2010.01511">arXiv version</a>).
%H A374752 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PisotNumber.html">Pisot Number</a>.
%H A374752 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pisot%E2%80%93Vijayaraghavan_number">Pisot-Vijayaraghavan number</a>.
%H A374752 <a href="/index/Al#algebraic_05">Index entries for algebraic numbers, degree 5</a>.
%F A374752 Equals the real root of x^5 - 2*x^4 + x - 1.
%F A374752 Using the notation of Hare and Sidorov (2021, see Theorem 3.1), phi_1 = psi_1 (A001622) < phi_2 (A109134) < psi_2 (A058265) < phi_3 (A275828) < chi (A374751) < psi_3 (A086088) < phi_4 (this constant) < ... < psi_r < phi_(r+1) < ... < 2.
%e A374752 1.933184981899520446791424030335631586375183784479...
%t A374752 First[RealDigits[Root[#^5 - 2*#^4 + # - 1 &, 1], 10, 100]]
%Y A374752 Cf. A001622, A058265, A086088, A109134, A275828, A374751.
%K A374752 nonn,cons,changed
%O A374752 1,2
%A A374752 _Paolo Xausa_, Jul 18 2024