cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374754 a(n) is the difference between the sum of the squares and the sum of the cubes for the n first terms of A002760.

This page as a plain text file.
%I A374754 #34 Aug 10 2024 21:39:33
%S A374754 0,0,4,-4,5,21,46,19,55,104,104,185,285,406,281,425,594,790,574,799,
%T A374754 1055,1344,1668,1325,1686,2086,2527,3011,2499,3028,3604,4229,4905,
%U A374754 4905,5689,6530,7430,8391,7391,8415,9504,10660,11885,13181,11850,13219,14663,16184
%N A374754 a(n) is the difference between the sum of the squares and the sum of the cubes for the n first terms of A002760.
%C A374754 For A002760(n) <= k < A002760(n+1), the difference between the sum of the squares and the sum of the cubes in the first k nonnegative integers is a(n).
%H A374754 Felix Huber, <a href="/A374754/b374754.txt">Table of n, a(n) for n = 1..10000</a>
%F A374754 a(1) = 0. For n >= 2, a(n) = a(n-1) + f*A002760(n) where f = 1 if A002760(n) is a square but not a cube, f = -1 if A002760(n) is a cube but not a square and f = 0 if A002760(n) is a square and a cube.
%e A374754 a(7) = a(6) + A002760(7) = 21 + 1*25 = 46, since 25 is a square but not a cube.
%e A374754 a(8) = a(7) - A002760(8) = 46 + (-1)*27 = 19, since 27 is a cube but not a square.
%e A374754 a(11) = a(10) + A002760(11) - A002760(11) = 104 + 0*64 = 104, since 64 is a square and a cube.
%e A374754 The difference between the sum of the squares and the sum of the cubes in the first 24 nonnegative integers is a(6) = 21, because A002760(6) = 16 <= 24 < A002760(7) = 25.
%p A374754 isA374754:=proc(k)
%p A374754    option remember;
%p A374754    if k=0 then 0
%p A374754    elif issqr(k) and not type(root(k,3),integer) then procname(k-1)+k;
%p A374754    elif type(root(k,3),integer) and not issqr(k) then procname(k-1)-k;
%p A374754    else procname(k-1)
%p A374754    fi;
%p A374754 end proc;
%p A374754 A374754:=k->
%p A374754    if k=0 then 0
%p A374754    elif isA374754(k)<>isA374754(k-1) or type(root(k,6),integer) then isA374754(k)
%p A374754    fi;
%p A374754 seq(A374754(k),k=0..1521);
%o A374754 (PARI) lista(nn) = my(v = select(x->issquare(x) || ispower(x, 3), [0..nn]), s=0, w = vector(#v)); for (i=1, #v, if (issquare(v[i]), s += v[i]); if (ispower(v[i], 3), s -= v[i]); w[i] = s;); w; \\ _Michel Marcus_, Aug 04 2024
%o A374754 (Python)
%o A374754 from math import isqrt
%o A374754 from sympy import integer_nthroot
%o A374754 def A374754(n):
%o A374754     def f(x): return n-1+x+integer_nthroot(x,6)[0]-(b:=integer_nthroot(x,3)[0])-(a:=isqrt(x)), a, b
%o A374754     m = n-1
%o A374754     k, a, b = f(n-1)
%o A374754     while m != k:
%o A374754         m = k
%o A374754         k, a, b = f(k)
%o A374754     return a*(a+1)*((a<<1)+1)//3-((b*(b+1))**2>>1)>>1 # _Chai Wah Wu_, Aug 09 2024
%Y A374754 Cf. A000330 (sum of squares), A000537 (sum of cubes), A001014 (sixth powers), A002760 (squares and cubes), A061023, A087285, A087286.
%K A374754 sign
%O A374754 1,3
%A A374754 _Felix Huber_, Jul 28 2024