A374759 Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are identical.
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 21, 22, 31, 32, 33, 34, 36, 37, 42, 45, 63, 64, 65, 66, 68, 69, 73, 76, 85, 86, 90, 127, 128, 129, 130, 132, 133, 136, 137, 146, 148, 153, 170, 173, 181, 182
Offset: 1
Keywords
Examples
The 18789th composition in standard order is (3,3,2,1,3,2,1), with strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so 18789 is in the sequence. The terms together with the corresponding compositions begin: 0: () 1: (1) 2: (2) 3: (1,1) 4: (3) 5: (2,1) 7: (1,1,1) 8: (4) 9: (3,1) 10: (2,2) 15: (1,1,1,1) 16: (5) 17: (4,1) 18: (3,2) 21: (2,2,1) 22: (2,1,2) 31: (1,1,1,1,1) 32: (6) 33: (5,1) 34: (4,2) 36: (3,3) 37: (3,2,1)
Links
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],SameQ@@First/@Split[stc[#],Greater]&]
Comments