This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374760 #14 Jul 31 2024 17:27:29 %S A374760 1,1,2,3,4,6,8,11,15,21,28,38,52,70,95,129,173,234,318,428,579,784, %T A374760 1059,1433,1942,2630,3564,4835,6559,8902,12094,16432,22340,30392, %U A374760 41356,56304,76692,104499,142448,194264,265015,361664,493749,674278,921113,1258717 %N A374760 Number of integer compositions of n whose leaders of strictly decreasing runs are identical. %C A374760 The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each. %H A374760 Andrew Howroyd, <a href="/A374760/b374760.txt">Table of n, a(n) for n = 0..1000</a> %H A374760 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %F A374760 G.f.: 1 + Sum_{k>=1} -1 + 1/(1 - x^k*Product_{j=1..k-1} (1 + x^j)). - _Andrew Howroyd_, Jul 31 2024 %e A374760 The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15). %e A374760 The a(0) = 1 through a(8) = 15 compositions: %e A374760 () (1) (2) (3) (4) (5) (6) (7) (8) %e A374760 (11) (21) (22) (32) (33) (43) (44) %e A374760 (111) (31) (41) (42) (52) (53) %e A374760 (1111) (212) (51) (61) (62) %e A374760 (221) (222) (313) (71) %e A374760 (11111) (321) (331) (323) %e A374760 (2121) (421) (332) %e A374760 (111111) (2122) (431) %e A374760 (2212) (521) %e A374760 (2221) (2222) %e A374760 (1111111) (3131) %e A374760 (21212) %e A374760 (21221) %e A374760 (22121) %e A374760 (11111111) %t A374760 Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}] %o A374760 (PARI) seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ _Andrew Howroyd_, Jul 31 2024 %Y A374760 For partitions instead of compositions we have A034296. %Y A374760 The weak version is A374742, ranks A374744. %Y A374760 The opposite version is A374686, ranks A374685. %Y A374760 The weak opposite version is A374631, ranks A374633. %Y A374760 Ranked by A374759. %Y A374760 Other types of runs (instead of strictly decreasing): %Y A374760 - For leaders of identical runs we have A000005 for n > 0, ranks A272919. %Y A374760 - For leaders of anti-runs we have A374517, ranks A374519. %Y A374760 Other types of run-leaders (instead of identical): %Y A374760 - For distinct leaders we have A374761, ranks A374767. %Y A374760 - For strictly increasing leaders we have A374762. %Y A374760 - For strictly decreasing leaders we have A374763. %Y A374760 - For weakly increasing leaders we have A374764. %Y A374760 - For weakly decreasing leaders we have A374765. %Y A374760 A003242 counts anti-run compositions, ranks A333489. %Y A374760 A011782 counts compositions. %Y A374760 A238130, A238279, A333755 count compositions by number of runs. %Y A374760 A274174 counts contiguous compositions, ranks A374249. %Y A374760 A373949 counts compositions by run-compressed sum, opposite A373951. %Y A374760 Cf. A000009, A106356, A188920, A189076, A238343, A261982, A333213, A374632, A374634, A374635, A374640, A374761. %K A374760 nonn %O A374760 0,3 %A A374760 _Gus Wiseman_, Jul 29 2024 %E A374760 a(24) onwards from _Andrew Howroyd_, Jul 31 2024