cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374766 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of maximal strictly decreasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 8, 7, 0, 0, 0, 1, 3, 17, 11, 0, 0, 0, 0, 4, 10, 35, 15, 0, 0, 0, 0, 1, 12, 28, 65, 22, 0, 0, 0, 0, 1, 6, 31, 70, 118, 30, 0, 0, 0, 0, 1, 3, 22, 78, 163, 203, 42, 0, 0, 0, 0, 0, 4, 13, 69, 186, 354, 342, 56
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Are the column-sums finite?

Examples

			Triangle begins:
   1
   0   1
   0   0   2
   0   0   1   3
   0   0   0   3   5
   0   0   0   1   8   7
   0   0   0   1   3  17  11
   0   0   0   0   4  10  35  15
   0   0   0   0   1  12  28  65  22
   0   0   0   0   1   6  31  70 118  30
   0   0   0   0   1   3  22  78 163 203  42
   0   0   0   0   0   4  13  69 186 354 342  56
Row n = 6 counts the following compositions:
  .  .  .  (321)  (42)    (51)     (6)
                  (132)   (411)    (15)
                  (2121)  (141)    (24)
                          (312)    (114)
                          (231)    (33)
                          (213)    (123)
                          (3111)   (1113)
                          (1311)   (222)
                          (1131)   (1122)
                          (2211)   (11112)
                          (2112)   (111111)
                          (1221)
                          (1212)
                          (21111)
                          (12111)
                          (11211)
                          (11121)
		

Crossrefs

Column n = k is A000041.
Row-sums are A011782.
For length instead of sum we have A333213.
The corresponding rank statistic is A374758, row-sums of A374757.
For identical leaders we have A374760, ranks A374759.
For distinct leaders we have A374761, ranks A374767.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of weakly decreasing runs we have A374748.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Greater]]==k&]], {n,0,15},{k,0,n}]