cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374772 Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.

This page as a plain text file.
%I A374772 #26 May 21 2025 01:34:39
%S A374772 7,5,4,6,9,7,3,9,9,3,3,7,4,0,5,8,3,0,3,9,1,6,5,2,1,0,5,9,9,0,2,2,9,3,
%T A374772 3,1,3,4,2,4,3,2,1,9,2,1,4,5,9,4,3,4,2,8,4,7,6,5,8,3,5,9,2,0,5,6,1,5,
%U A374772 8,6,6,4,5,0,7,3,0,3,9,0,5,3,0,3,3,2,7,4,6,8
%N A374772 Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.
%C A374772 See A374753 for more information on the dodecahedral conjecture.
%C A374772 Also isoperimetric quotient (see A381671 for definition) of a regular dodecahedron. - _Paolo Xausa_, May 19 2025
%H A374772 Paolo Xausa, <a href="/A374772/b374772.txt">Table of n, a(n) for n = 0..10000</a>
%H A374772 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LocalDensity.html">Local Density</a>.
%H A374772 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A374772 Equals (4/3)*Pi/A374753 = 10*A019699/A374753.
%F A374772 Equals A374771/A102769.
%F A374772 Equals Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)).
%F A374772 Equals 4*Pi/A374755.
%F A374772 Equals 36*Pi*A102769^2/(A131595^3). - _Paolo Xausa_, May 19 2025
%e A374772 0.7546973993374058303916521059902293313424321921459...
%t A374772 First[RealDigits[Pi*Sqrt[5 + Sqrt[5]]/(15*Sqrt[10]*(Sqrt[5] - 2)), 10, 100]]
%o A374772 (PARI) Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)) \\ _Charles R Greathouse IV_, Feb 07 2025
%Y A374772 Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374771, A374837, A374838.
%Y A374772 Cf. A093825, A019699, A102769, A131595, A381671.
%K A374772 nonn,cons
%O A374772 0,1
%A A374772 _Paolo Xausa_, Jul 19 2024