cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374777 Numerator of the mean abundancy index of the divisors of n.

This page as a plain text file.
%I A374777 #9 Jul 20 2024 03:40:46
%S A374777 1,5,7,17,11,35,15,49,34,11,23,119,27,75,77,129,35,85,39,187,5,115,47,
%T A374777 343,86,135,71,85,59,77,63,107,161,175,33,289,75,195,63,539,83,25,87,
%U A374777 391,187,235,95,301,54,43,245,153,107,355,23,105,91,295,119,1309,123,315
%N A374777 Numerator of the mean abundancy index of the divisors of n.
%C A374777 First differs from A318491 at n = 27.
%C A374777 The abundancy index of a number k is sigma(k)/k = A017665(k)/A017666(k).
%H A374777 Amiram Eldar, <a href="/A374777/b374777.txt">Table of n, a(n) for n = 1..10000</a>
%F A374777 Let f(n) = a(n)/A374778(n). Then:
%F A374777 f(n) = (Sum_{d|n} sigma(d)/d) / tau(n), where sigma(n) is the sum of divisors of n (A000203), and tau(n) is their number (A000005).
%F A374777 f(n) is multiplicative with f(p^e) = ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2).
%F A374777 f(n) = A318491(n)/(A318492(n)*A000005(n)).
%F A374777 f(n) = (Sum_{d|n} d*tau(d)) / (n*tau(n)) = A060640(n)/A038040(n).
%F A374777 Dirichlet g.f. of f(n): zeta(s) * Product_{p prime} ((p/(p-1)^2) * ((p^s-1)*log((1-1/p^s)/(1-1/p^(s+1))) + p-1)).
%F A374777 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} ((p/(p-1)) * (1 - log(1 + 1/p))) = 1.3334768464... . For comparison, the asymptotic mean of the abundancy index over all the positive integers is zeta(2) = 1.644934... (A013661).
%F A374777 Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
%e A374777 For n = 2, n has 2 divisors, 1 and 2. Their abundancy indices are sigma(1)/1 = 1 and sigma(2)/2 = 3/2, and their mean abundancy index is (1 + 3/2)/2 = 5/4. Therefore a(2) = numerator(5/4) = 5.
%t A374777 f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
%o A374777 (PARI) a(n) = {my(f = factor(n), p, e); numerator(prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2)));}
%Y A374777 Cf. A000005, A000203, A013661, A017665, A017666, A038040, A060640, A245214, A318491, A318492, A374778 (denominators), A374779, A374780, A374781.
%K A374777 nonn,easy,frac
%O A374777 1,2
%A A374777 _Amiram Eldar_, Jul 19 2024