A374778 Denominator of the mean abundancy index of the divisors of n.
1, 4, 6, 12, 10, 24, 14, 32, 27, 8, 22, 72, 26, 56, 60, 80, 34, 54, 38, 120, 4, 88, 46, 192, 75, 104, 54, 56, 58, 48, 62, 64, 132, 136, 28, 162, 74, 152, 52, 320, 82, 16, 86, 264, 135, 184, 94, 160, 49, 30, 204, 104, 106, 216, 20, 64, 76, 232, 118, 720, 122, 248
Offset: 1
Examples
For n = 2, n has 2 divisors, 1 and 2. Their abundancy indices are sigma(1)/1 = 1 and sigma(2)/2 = 3/2, and their mean abundancy index is (1 + 3/2)/2 = 5/4. Therefore a(2) = denominator(5/4) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A374777 (numerators).
Programs
-
Mathematica
f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n), p, e); denominator(prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2)));}