cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374780 Odd terms in A245214.

Original entry on oeis.org

10854718875, 12131744625, 13408770375, 18091198125, 19538493975, 20219574375, 21070924875, 22347950625, 22915517625, 23880381525, 24902002125, 25327677375, 28307404125, 28733079375, 29462808375, 32564156625, 35118208125, 36395233875, 39800635875, 40226311125
Offset: 1

Views

Author

Amiram Eldar, Jul 19 2024

Keywords

Comments

Odd numbers whose divisors have a mean abundancy index that is larger than 2.
The odd terms in A245214 are relatively rare: a(1) = A245214(276918705).
The least term that is not divisible by 3 is 26115176669245401228259189019322202117310546875.

Examples

			10854718875 is a term since it is odd and A374777(10854718875) / A374778(10854718875) = 11975203 / 5955950 = 2.0106... > 2.
		

Crossrefs

Subsequence of A245214.

Programs

  • Mathematica
    f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{v = {}}, Do[If[s[k] > 2, AppendTo[v, k]], {k, 1, kmax, 2}]; v]; seq[2*10^10]
  • PARI
    is(k) = if(!(k % 2), 0, my(f = factor(k)); prod(i = 1, #f~, p=f[i,1]; e=f[i,2]; (-2*p - e*p + p^2 + e*p^2 + p^(-e))/((e + 1)*(p - 1)^2)) > 2);