cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374781 Numbers whose divisors have a record value of the mean abundancy index.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 48, 72, 96, 120, 144, 240, 288, 360, 480, 576, 720, 1440, 2160, 2880, 4320, 5760, 8640, 12960, 15120, 17280, 20160, 25920, 30240, 40320, 51840, 60480, 90720, 120960, 181440, 241920, 302400, 362880, 483840, 604800, 725760, 907200, 1209600
Offset: 1

Views

Author

Amiram Eldar, Jul 19 2024

Keywords

Comments

Positions of records in {f(k) | k = 1, 2, ...}, where f(k) = (Sum_{d|k} sigma(d)/d) / tau(k) = A374777(k)/A374778(k), i.e., numbers k such that f(k) > f(m) for all m < k.
Similarly to the sequence of abundancy indices {sigma(k)/k} = {A017665(k)/A017666(k)}, the record values occur at indices that are least numbers of each prime signature (A025487). For the abundancy indices the records occur at the superabundant numbers (A004394).
The least number k such that A374777(k)/A374778(k) > m for m = 2, 3, ..., is 144, 10886400, 532197314288640000, 2205754988720678629683817883074560000000, ... .

Examples

			The values of A374777(k)/A374778(k) for k = 1..6 are {1, 5/4, 7/6, 17/12, 11/10, 35/24} = {1, 1.25, 1.166..., 1.416..., 1.1, 1.458...}. The records values, {1, 1.25, 1.416..., 1.458...} occur at k = 1, 2, 4, and 6, the first 4 terms of this sequence.
		

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{v = {}, smax = 0, s1}, Do[s1 = s[k]; If[s1 > smax, AppendTo[v, k]; smax = s1], {k, 1, kmax}]; v]; seq[10^5]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, p=f[i,1]; e=f[i,2]; (-2*p - e*p + p^2 + e*p^2 + p^(-e))/((e + 1)*(p - 1)^2));}
    lista(kmax) = {my(smax = 0, s1); for(k = 1, kmax, s1 = s(k); if(s1 > smax, print1(k, ", "); smax = s1));}