cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374783 Numerator of the mean unitary abundancy index of the unitary divisors of n.

This page as a plain text file.
%I A374783 #13 Jul 20 2024 14:41:10
%S A374783 1,5,7,9,11,35,15,17,19,11,23,21,27,75,77,33,35,95,39,99,5,115,47,119,
%T A374783 51,135,55,135,59,77,63,65,161,175,33,19,75,195,63,187,83,25,87,207,
%U A374783 209,235,95,77,99,51,245,243,107,275,23,255,91,295,119,231,123,315
%N A374783 Numerator of the mean unitary abundancy index of the unitary divisors of n.
%C A374783 The unitary abundancy index of a number k is A034448(k)/k = A332882(k)/A332883(k).
%C A374783 The record values of a(n)/A374784(n) are attained at the primorial numbers (A002110).
%C A374783 The least number k such that a(k)/A374784(k) is larger than 2, 3, 4, ..., is A002110(9) = 223092870, A002110(314) = 7.488... * 10^878, A002110(65599) = 5.373... * 10^356774, ... .
%H A374783 Amiram Eldar, <a href="/A374783/b374783.txt">Table of n, a(n) for n = 1..10000</a>
%F A374783 Let f(n) = a(n)/A374784(n). Then:
%F A374783 f(n) = (Sum_{d|n, gcd(d, n/d) = 1} usigma(d)/d) / ud(n), where usigma(n) is the sum of unitary divisors of n (A034448), and ud(n) is their number (A034444).
%F A374783 f(n) is multiplicative with f(p^e) = 1 + 1/(2*p^e).
%F A374783 f(n) = (Sum_{d|n, gcd(d, n/d) = 1} d*ud(d))/(n*ud(n)) = A343525(n)/(n*A034444(n)).
%F A374783 Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/(2*p^(s+1)) - 1/(2*p^(2*s+1))).
%F A374783 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 + 1/(2*p*(p+1))) = 1.17443669198552182119... . For comparison, the asymptotic mean of the unitary abundancy index over all the positive integers is zeta(2)/zeta(3) = 1.368432... (A306633).
%F A374783 Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
%F A374783 f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).
%e A374783 For n = 4, 4 has 2 unitary divisors, 1 and 4. Their unitary abundancy indices are usigma(1)/1 = 1 and usigma(4)/4 = 5/4, and their mean unitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
%t A374783 f[p_, e_] := 1 + 1/(2*p^e); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
%o A374783 (PARI) a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])));}
%Y A374783 Cf. A002110, A005117, A034444, A034448, A077610, A306633, A332882, A332883, A343525, A374784 (denominators).
%Y A374783 Similar sequences: A374777/A374778, A374786/A374787.
%K A374783 nonn,easy,frac
%O A374783 1,2
%A A374783 _Amiram Eldar_, Jul 20 2024