cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374786 Numerator of the mean infinitary abundancy index of the infinitary divisors of n.

This page as a plain text file.
%I A374786 #17 Jul 20 2024 15:12:20
%S A374786 1,5,7,9,11,35,15,45,19,11,23,21,27,75,77,33,35,95,39,99,5,115,47,105,
%T A374786 51,135,133,135,59,77,63,165,161,175,33,19,75,195,63,99,83,25,87,207,
%U A374786 209,235,95,77,99,51,245,243,107,665,23,675,91,295,119,231,123,315
%N A374786 Numerator of the mean infinitary abundancy index of the infinitary divisors of n.
%C A374786 The infinitary abundancy index of a number k is A049417(k)/k.
%C A374786 The record values of a(n)/A374787(n) are attained at the terms of A037992.
%C A374786 The least number k such that a(k)/A374787(k) is larger than 2, 3, 4, ..., is A037992(6) = 7560, A037992(33) = 1370819010042780920891599455129161859473627856000, ... .
%H A374786 Amiram Eldar, <a href="/A374786/b374786.txt">Table of n, a(n) for n = 1..10000</a>
%F A374786 Let f(n) = a(n)/A374787(n). Then:
%F A374786 f(n) = (Sum_{d infinitary divisor of n} isigma(d)/d) / id(n), where isigma(n) is the sum of infinitary divisors of n (A049417), and id(n) is their number (A037445).
%F A374786 f(n) is multiplicative with f(p^e) = Product{k>=1, e_k=1} (1 + 1/(2*p^(2^(k+1)))), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
%F A374786 f(n) = (Sum_{d infinitary divisor of n} d*id(d)) / (n*id(n)).
%F A374786 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{P} (1 + 1/(2*P*(P+1))) = 1.21407233718434377029..., where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376). For comparison, the asymptotic mean of the infinitary abundancy index over all the positive integers is 1.461436... = 2 * A327574.
%F A374786 Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
%F A374786 f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).
%F A374786 f(n) >= A374783(n)/A374784(n) with equality if and only if n is in A138302.
%e A374786 For n = 4, 4 has 2 infinitary divisors, 1 and 4. Their infinitary abundancy indices are isigma(1)/1 = 1 and isigma(4)/4 = 5/4, and their mean infinitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
%t A374786 f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], _?(# == 1 &)])); a[1] = 1; a[n_] := Numerator[Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n])))]; Array[a, 100]
%o A374786 (PARI) a(n) = {my(f = factor(n), b); numerator(prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))));}
%Y A374786 Cf. A005117, A037445, A037992, A049417, A050376, A077609, A138302, A327574, A374787 (denominators).
%Y A374786 Similar sequences: A374777/A374778, A374783/A374784.
%K A374786 nonn,easy,frac
%O A374786 1,2
%A A374786 _Amiram Eldar_, Jul 20 2024