cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374787 Denominator of the mean infinitary abundancy index of the infinitary divisors of n.

This page as a plain text file.
%I A374787 #7 Jul 20 2024 14:41:43
%S A374787 1,4,6,8,10,24,14,32,18,8,22,16,26,56,60,32,34,72,38,80,4,88,46,64,50,
%T A374787 104,108,112,58,48,62,128,132,136,28,16,74,152,52,64,82,16,86,176,180,
%U A374787 184,94,64,98,40,204,208,106,432,20,448,76,232,118,160,122,248
%N A374787 Denominator of the mean infinitary abundancy index of the infinitary divisors of n.
%H A374787 Amiram Eldar, <a href="/A374787/b374787.txt">Table of n, a(n) for n = 1..10000</a>
%e A374787 For n = 4, 4 has 2 infinitary divisors, 1 and 4. Their infinitary abundancy indices are isigma(1)/1 = 1 and isigma(4)/4 = 5/4, and their mean infinitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = denominator(9/8) = 8.
%t A374787 f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], _?(# == 1 &)])); a[1] = 1; a[n_] := Denominator[Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n])))]; Array[a, 100]
%o A374787 (PARI) a(n) = {my(f = factor(n), b); denominator(prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))));}
%Y A374787 Cf. A037445, A049417 (isigma), A077609, A374786 (numerators).
%Y A374787 Similar sequences: A374777/A374778, A374783/A374784.
%K A374787 nonn,easy,frac
%O A374787 1,2
%A A374787 _Amiram Eldar_, Jul 20 2024