This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374811 #10 Jul 22 2024 20:28:56 %S A374811 -1,0,1,5,7,14,49,1156,2531,2461,5263,23231,48857,142327,161366, %T A374811 677983151,701098187,49162215523,56895744916,97659246406291, %U A374811 28593399072431,21502630803250973,26851741349945933,246602936364321931,1508124176077531039,10968493811640186469 %N A374811 Numerator of the expected height of a random binary search tree (BST) with n elements. %C A374811 Here we're using the conventional definition of BST height, which is path length from the root to the node (the height of an empty tree is -1), as compared to A195582 which has the height one greater. %F A374811 a(n) = numerator(A195582(n)/A195583(n) - 1). %F A374811 a(n) = A195582(n) - A195583(n). - _Alois P. Heinz_, Jul 20 2024 %p A374811 b:= proc(n, k) option remember; %p A374811 if n=0 then 1 %p A374811 elif n=1 then `if`(k>0, 1, 0) %p A374811 else add(binomial(n-1, r-1) *b(r-1, k-1) *b(n-r, k-1), r=1..n) %p A374811 fi %p A374811 end: %p A374811 T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0): %p A374811 a:= n-> add(T(n, k)*k, k=0..n)/n!: %p A374811 seq(numer(a(n)-1), n=0..30); %t A374811 [n_, k_] := b[n, k] = If[n==0, 1, If[n==1, If[k>0, 1, 0], Sum[Binomial[n - 1, r-1]*b[r-1, k-1]*b[n-r, k-1], {r, 1, n}]]]; T[n_, k_] := b[n, k] - If[ k>0, b[n, k-1], 0]; a[n_] := Sum[T[n, k]*k, {k, 0, n}]/n!; Table[ Numerator[a[n]-1], {n, 0, 30}] %Y A374811 Denominators: A195583. %Y A374811 Cf. A195582. %K A374811 sign,frac %O A374811 0,4 %A A374811 _Melissa O'Neill_, Jul 20 2024