This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374832 #32 Aug 23 2024 10:24:21 %S A374832 0,0,1,0,1,1,1,0,2,1,1,2,1,1,5,0,1,5,1,2,10,1,1,12,4,1,23,2,1,41,1,0, %T A374832 64,1,12,102,1,1,191,12,1,338,1,2,777,1,1,1088,9,34,2057,2,1,3771,66, %U A374832 12,7156,1,1,17856,1,1,26811,0,193,48272,1,2,92206,385,1,175792 %N A374832 Number of incongruent n-sided Reinhardt polygons. %D A374832 Karl Reinhardt, Extremale Polygone gegebenen Durchmessers. Jahresber. Deutsche Math.-Verein. 31 (1922): 251-70. %H A374832 Kevin G. Hare and Michael J. Mossinghoff, <a href="https://doi.org/10.1007/s00454-012-9479-">Sporadic Reinhardt Polygons</a>, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 49, no. 3 (2013): 540-57. %H A374832 Kevin G. Hare and Michael J. Mossinghoff, <a href="https://doi.org/10.1007/s10711-018-0326-5">Most Reinhardt Polygons Are Sporadic</a>, Geom. Dedicata 198 (2019): 1-18. %H A374832 Michael J. Mossinghoff, <a href="https://doi.org/10.1016/j.jcta.2011.03.004">Enumerating Isodiametric and Isoperimetric Polygons</a>, J. Combin. Theory Ser. A 118, no. 6 (2011): 1801-15. %H A374832 Wikipedia, <a href="https://en.wikipedia.org/wiki/Reinhardt_polygon">Reinhardt polygon</a>. %F A374832 a(n) = A373694(n) + A373695(n). - _Bernd Mulansky_, Aug 23 2024 %Y A374832 Cf. A373694, A373695. %K A374832 nonn %O A374832 1,9 %A A374832 _Bernd Mulansky_, Jul 21 2024 %E A374832 More terms from _Bernd Mulansky_, Aug 23 2024