cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374839 Triangle read by rows: T(n,k) is the number of strong subtrees of height k in the complete binary tree of height n.

This page as a plain text file.
%I A374839 #16 Aug 24 2024 13:53:20
%S A374839 1,3,1,7,7,1,15,35,23,1,31,155,403,279,1,63,651,6603,71827,65815,1,
%T A374839 127,2667,106299,18394315,4313323667,4295033111,1,255,10795,1703451,
%U A374839 4709050939,282677998234827,18447026751295461523,18446744078004584727,1
%N A374839 Triangle read by rows: T(n,k) is the number of strong subtrees of height k in the complete binary tree of height n.
%C A374839 Informally, a strong subtree is one that preserves meets, the relative level of vertices, and the number of immediate successors to non-terminal vertices.
%C A374839 The collection of strong subtrees with height k of some tree T is often denoted by S_k(T). T(n,k) is the cardinality of S_k(2^(<n)).
%C A374839 There is a general expression for T(n,k) given in terms of an auxiliary function that can be eliminated for the diagonals, with the following examples:
%C A374839 T(m+1,m) = 3 + Sum_{j=1..m-1} 2^(2^i).
%C A374839 T(m+2,m) = 7 + 3*(Sum_{j=1..m-1} 2^(2^i)) + Sum_{1<=i,j<=m-1} 2^(2^i + 2^j).
%C A374839 T(m+3,m) = 15 + 7*(Sum_{j=1..m-1} 2^(2^i)) + 3*(Sum_{1<=i,j<=m-1} 2^(2^i + 2^j)) + Sum_{1<=i,j,k<=m-1} 2^(2^i + 2^j + 2^k).
%H A374839 John V. Siratt, <a href="https://curate.nd.edu/articles/dataset/Some_Applications_of_Formal_Mathematics/26195681">Some applications of formal mathematics</a>, Doctoral dissertation, University of Notre Dame (2024).
%F A374839 T(n,k) = Sum_{1 <= x_1 < ... < x_k <= n} Product_{i=1..k} (2^(x_i - x_{i-1} - 1))^(2^(i - 1)), where x_0 = 0.
%e A374839 Triangle begins:
%e A374839     1;
%e A374839     3,    1;
%e A374839     7,    7,      1;
%e A374839    15,   35,     23,        1;
%e A374839    31,  155,    403,      279,          1;
%e A374839    63,  651,   6603,    71827,      65815,          1;
%e A374839   127, 2667, 106299, 18394315, 4313323667, 4295033111, 1;
%e A374839   ...
%e A374839 Formatted as a transposed array:
%e A374839 T(n,k) | n=1  2  3   4    5      6           7                     8
%e A374839 --------------------------------------------------------------------
%e A374839 k=1    |   1  3  7  15   31     63         127                   255
%e A374839 2      |   0  1  7  35  155    651        2667                 10795
%e A374839 3      |   0  0  1  23  403   6603      106299               1703451
%e A374839 4      |   0  0  0   1  279  71827    18394315            4709050939
%e A374839 5      |   0  0  0   0    1  65815  4313323667       282677998234827
%e A374839 6      |   0  0  0   0    0      1  4295033111  18447026751295461523
%e A374839 7      |   0  0  0   0    0      0           1  18446744078004584727
%e A374839 8      |   0  0  0   0    0      0           0                     1
%o A374839 (PARI) T(n,k)={my(s=0); forvec(x=vector(k,i,[1,n]),s+=prod(i=1, k,  (2^(x[i] - if(i>1, x[i-1]) - 1))^(2^(i - 1))), 2); s}
%o A374839 { for(n=1, 8, print(vector(n,k,T(n,k)))) } \\ _Andrew Howroyd_, Jul 23 2024
%Y A374839 Column 1 is A000225.
%Y A374839 Column 2 appears to be A006095.
%K A374839 nonn,tabl
%O A374839 1,2
%A A374839 _John V Siratt_, Jul 21 2024