cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374852 a(n) = (1/3)*A054640(n) for n >= 1.

This page as a plain text file.
%I A374852 #5 Aug 17 2024 23:10:10
%S A374852 1,4,24,192,2304,32256,580608,11612160,278691840,8360755200,
%T A374852 267544166400,10166678323200,427000489574400,18788021541273600,
%U A374852 901825033981132800,48698551834981171200,2921913110098870272000,181158612826129956864000,12318785672176837066752000
%N A374852 a(n) = (1/3)*A054640(n) for n >= 1.
%C A374852 a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.
%F A374852 a(n) = (1/3)(s**t)(n) for n>=1, where s = (1,1,1,...), t = A000040 (the primes), and ** denotes obverse convolution, as in A374848.
%F A374852  a(n) = 2n*a(n-1) for n >= 2.
%t A374852 s[n_] := 1; t[n_] := Prime[n];
%t A374852 u[n_] := Product[s[k] + t[n + 1 - k], {k, 1, n}]
%t A374852 (1/3) Table[u[n], {n, 1, 25}]
%Y A374852 Cf. A000040, A374848.
%K A374852 nonn
%O A374852 1,2
%A A374852 _Clark Kimberling_, Aug 05 2024