This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374870 #11 Oct 21 2024 14:36:00 %S A374870 39,23,5847,735,65,29,35,77,111,173,415,185,79,47,113,137,317,867,307, %T A374870 543,4843,2153,1203,161,59,159,351,531,1577,475,617,89,5321,95,11405, %U A374870 1371,107,83,219,197,199,1855,365,6521,3667,8597,131 %N A374870 Let e(m) be the sum of all values of k satisfying the equation: (m mod k = floor((m - k)/k) mod k), minus 2*m (1 <= k <= m); then a(n) is the smallest m for which e(m) = n, or 0 if no e(m) has value n. %C A374870 The three smallest values of n (n_1, n_2, n_3) for which a(n) is unknown after computing consecutive e(t) for 1 <= t <= z: %C A374870 z | n_1 | n_2 | n_3 | %C A374870 ---------------------------------------- %C A374870 10^5 | 309 | 343 | 352 | %C A374870 2*10^5 | 394 | 556 | 558 | %C A374870 3*10^5 | 647 | 706 | 755 | %C A374870 4*10^5 | 941 | 951 | 962 | %C A374870 5*10^5 | 951 | 964 | 1069 | %C A374870 Are there any values of n for which a(n) = 0? %e A374870 Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i. %e A374870 The triangle begins: %e A374870 i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... %e A374870 ----------------------------------------- %e A374870 1 | 1 %e A374870 2 | 1 1 %e A374870 3 | 1 0 1 %e A374870 4 | 1 0 0 1 %e A374870 5 | 1 1 0 0 1 %e A374870 6 | 1 1 0 0 0 1 %e A374870 7 | 1 0 1 0 0 0 1 %e A374870 8 | 1 0 0 0 0 0 0 1 %e A374870 9 | 1 1 0 1 0 0 0 0 1 %e A374870 10 | 1 1 0 0 0 0 0 0 0 1 %e A374870 11 | 1 0 1 0 1 0 0 0 0 0 1 %e A374870 12 | 1 0 1 0 0 0 0 0 0 0 0 1 %e A374870 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1 %e A374870 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1 %e A374870 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 %e A374870 ... %e A374870 The j-th column has period j^2. Consecutive elements of this period are j X j identity matrix entries, read by rows. %e A374870 a(0) = 39 because 39 is the smallest m for which e(m) = 0 (only k's satisfying the equation: 39 mod k = floor((39 - k)/k) mod k are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39-2*39 = 0 = e(39)). %e A374870 a(2) = 5847 because 5847 is the smallest m for which e(m) = 2 (only k's satisfying the equation: 5847 mod k = floor((5847 - k)/k) mod k are: 1, 85, 135, 171, 343, 730, 1461, 2923, 5847, hence: 1+85+135+171+343+730+1461+2923+5847-2*5847 = 2 = e(5847)). %o A374870 (VBA) %o A374870 Sub calcul() %o A374870 For m = 1 To 500000 %o A374870 s = 0 %o A374870 For k = 1 To WorksheetFunction.Floor(m / 2, 1) %o A374870 If (m - WorksheetFunction.Floor((m - k) / k, 1)) Mod k = 0 Then %o A374870 s = s + k %o A374870 End If %o A374870 Next k %o A374870 If s > m Then %o A374870 e = s - m %o A374870 v = WorksheetFunction.Ceiling(e / 1000000, 1) %o A374870 If IsEmpty(Cells(e - (v - 1) * 1000000, v)) = False Then %o A374870 Else %o A374870 Cells(e - (v - 1) * 1000000, v).Value = m %o A374870 End If %o A374870 End If %o A374870 Next m %o A374870 End Sub %Y A374870 Cf. A005101, A033880, A051731, A294347, A375007, A375595. %K A374870 nonn %O A374870 0,1 %A A374870 _Lechoslaw Ratajczak_, Sep 16 2024