This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374901 #33 Oct 03 2024 03:54:36 %S A374901 1,3,4,6,10,11,118,271,288,441,457,2931,5527,6984,9998,10395,13703 %N A374901 Numbers k such that k!^2 + ((k - 1)!^2) + 1 is prime. %C A374901 a(18) > 15000 - _Karl-Heinz Hofmann_, Aug 23 2024 %e A374901 4 is a term, because 4!^2 + 3!^2 + 1 = 576 + 36 + 1 = 613 is a prime number. %o A374901 (PARI) is(k) = isprime((k!^2)+((k-1)!)^2+1); %o A374901 (Python) %o A374901 from itertools import count, islice %o A374901 from sympy import isprime %o A374901 def A374901_gen(): # generator of terms %o A374901 f = 1 %o A374901 for k in count(1): %o A374901 if isprime((k**2+1)*f+1): %o A374901 yield k %o A374901 f *= k**2 %o A374901 A374901_list = list(islice(A374901_gen(),10)) # _Chai Wah Wu_, Oct 02 2024 %Y A374901 Cf. A000142, A055490, A358805, A358878, A359180, A080778, A243078, A242994 %K A374901 nonn,more %O A374901 1,2 %A A374901 _Arsen Vardanyan_, Jul 31 2024 %E A374901 a(12)-a(14) from _Michael S. Branicky_, Aug 01 2024 %E A374901 a(15)-a(17) from _Karl-Heinz Hofmann_, Aug 23 2024