cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374902 Numerator of the mean number of divisors of the divisors of n.

This page as a plain text file.
%I A374902 #7 Jul 23 2024 20:46:32
%S A374902 1,3,3,2,3,9,3,5,2,9,3,3,3,9,9,3,3,3,3,3,9,9,3,15,2,9,5,3,3,27,3,7,9,
%T A374902 9,9,4,3,9,9,15,3,27,3,3,3,9,3,9,2,3,9,3,3,15,9,15,9,9,3,9,3,9,3,4,9,
%U A374902 27,3,3,9,27,3,5,3,9,3,3,9,27,3,9,3,9,3,9,9,9,9
%N A374902 Numerator of the mean number of divisors of the divisors of n.
%H A374902 Amiram Eldar, <a href="/A374902/b374902.txt">Table of n, a(n) for n = 1..10000</a>
%F A374902 Let f(n) = a(n)/A374903(n). Then:
%F A374902 f(n) = (Sum_{d|n} tau(d)) / tau(n), where tau(n) is the number of divisors of n (A000005).
%F A374902 f(n) = A007425(n)/A000005(n).
%F A374902 f(n) is multiplicative with f(p^e) = 1 + e/2.
%F A374902 Dirichlet g.f. of f(n): zeta(s)^2 * Product_{p prime} (1 - 1/(2*p^s)).
%e A374902 Fractions begin: 1, 3/2, 3/2, 2, 3/2, 9/4, 3/2, 5/2, 2, 9/4, ...
%e A374902 For n = 2, n has 2 divisors, 1 and 2. Their numbers of divisors are tau(1) = 1 and tau(2) = 2, and their mean number of divisors is (1 + 2)/2 = 3/2. Therefore a(2) = numerator(3/2) = 3.
%t A374902 f[p_, e_] := (e + 2)/2; a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
%o A374902 (PARI) a(n) = numerator(vecprod(apply(x -> x/2 +1, factor(n)[, 2])));
%Y A374902 Cf. A000005, A007425, A374903 (denominators).
%K A374902 nonn,easy,frac
%O A374902 1,2
%A A374902 _Amiram Eldar_, Jul 23 2024