cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374903 Denominator of the mean number of divisors of the divisors of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 1, 2, 4, 4, 1, 2, 1, 2, 1, 4, 4, 2, 4, 1, 4, 2, 1, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 1, 1, 4, 2, 2, 1, 1, 4, 1, 2, 4, 4, 4, 4, 4, 2, 2, 2, 4, 1, 1, 4, 8, 2, 1, 4, 8, 2, 1, 2, 4, 1, 1, 4, 8, 2, 2, 1, 4, 2, 2, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2024

Keywords

Examples

			For n = 2, n has 2 divisors, 1 and 2. Their numbers of divisors are tau(1) = 1 and tau(2) = 2, and their mean number of divisors is (1 + 2)/2 = 3/2. Therefore a(2) = denominator(3/2) = 2.
		

Crossrefs

Cf. A374902 (numerators), A374904, A374905.

Programs

  • Mathematica
    f[p_, e_] := (e + 2)/2; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = denominator(vecprod(apply(x -> x/2 +1, factor(n)[, 2])));

Formula

a(A374904(n)) = 1.
a(A374905(n)) = 1.

A374905 Least integers of their prime signature (A025487) whose divisors have an integer mean number of divisors.

Original entry on oeis.org

1, 4, 12, 16, 36, 64, 72, 144, 180, 192, 256, 288, 576, 720, 900, 960, 1024, 1152, 1260, 1296, 1728, 1800, 2304, 2880, 3072, 3600, 4096, 4608, 5184, 6300, 7200, 8640, 9216, 10800, 11520, 12600, 14400, 15552, 16384, 18432, 20160, 20736, 25200, 25920, 27648, 28800
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2024

Keywords

Comments

If k is a term then every number with the same prime signature as k is a term of A374904.

Crossrefs

Intersection of A025487 and A374904.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; f[p_, e_] := e/2 + 1; d[1] = 1; d[n_] := Denominator[Plus @@ f @@@ FactorInteger[n]]; Select[lps, d[#] == 1 &]
  • PARI
    is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (prime(#p) == p[#p] && e == vecsort(e, , 4) && denominator(vecprod(apply(x -> x/2 +1, e))) == 1);}

A374906 a(n) is the least number whose divisors have a mean number of divisors that equals n.

Original entry on oeis.org

1, 4, 12, 36, 72, 144, 288, 576, 720, 1728, 4608, 2880, 18432, 7200, 8640, 14400, 294912, 20160, 1179648, 43200, 50400, 115200, 18874368, 100800, 172800, 460800, 181440, 352800, 1207959552, 302400, 4831838208, 705600, 806400, 7372800, 1058400, 907200, 309237645312
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2024

Keywords

Comments

a(n) is the least number k such that A374902(k)/A374903(k) = A007425(k)/A000005(k) = n.
All the terms are in A025487.

Crossrefs

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; f[p_, e_] := e/2 + 1; f[1] = 1; f[n_] := Times @@ f @@@ FactorInteger[n]; s = f /@ lps; lps[[TakeWhile[Flatten[FirstPosition[s, #] & /@ Range[Max[s]]], ! MissingQ[#] &]]]

Formula

a(p) = 9 * 2^(p-2) for prime p >= 5.
a(p^e) = 9 * 2^(p^e-2) for prime p >= 3 and e >= 2.

A374907 Number whose divisors have a mean number of divisors that attains a record value.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 216, 240, 288, 360, 480, 576, 720, 1080, 1440, 2160, 2880, 4320, 5040, 7200, 7560, 8640, 10080, 14400, 15120, 20160, 30240, 40320, 50400, 60480, 90720, 100800, 120960, 151200, 181440, 241920, 302400, 362880, 453600
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2024

Keywords

Comments

First differs from A301414 at n = 454: a(454) = 526399743264198303532032000 is not a term of A301414. Is A301414 a subsequence of this sequence? The first 1073 terms of A301414 are in this sequence.
Indices of records of A374902(k)/A374903(k) = A007425(k)/A000005(k).
All the terms are least integers of their prime signature (A025487) since A374902(k)/A374903(k) depends only on the prime signature of k.
The corresponding record values are 1, 3/2, 2, 9/4, 5/2, 3, 15/4, 4, 9/2, 5, ... .

Crossrefs

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; f[p_, e_] := e/2 + 1; f[1] = 1; f[n_] := Times @@ f @@@ FactorInteger[n]; s = {}; fmax = -1; Do[f1 = f[lps[[k]]]; If[f1 > fmax, fmax = f1; AppendTo[s, lps[[k]]]], {k, 1, Length[lps]}]; s
Showing 1-4 of 4 results.