This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374908 #42 Sep 10 2024 08:45:38 %S A374908 0,6,12,19,27,35,45,54,63,74,81,90,102,115,124,135,147,156,169,183, %T A374908 197,208,226,242,256,272,285,302,318,332,347,359,375,388,407,420,435, %U A374908 449,463,478,492,507,521,533,548,564,579,593,609,627,641,653,669,687,703 %N A374908 Each term is the sum of the preceding term and its seven-segment total A006942. %C A374908 The number of segments in each digit 0 to 9 is [6,2,5,5,4,5,6,3,7,6]. %C A374908 Conjecture: Taking the least significant digit of each term is not an eventually periodic sequence. %H A374908 Dominic McCarty, <a href="/A374908/b374908.txt">Table of n, a(n) for n = 0..10000</a> %F A374908 a(n) = a(n-1) + A006942(a(n-1)). %e A374908 For n=1, the preceding a(0) = 0 is 6 segments so that a(1) = 0 + 6 = 6. %t A374908 s={0};Do[AppendTo[s,Last[s]+ Plus @@ (IntegerDigits@ Last[s] /. {0 -> 6, 1 -> 2, 2 -> 5, 3 -> 5, 7 -> 3, 8 -> 7, 9 -> 6})],{n,54}];s (* _James C. McMahon_, Aug 19 2024 *) %o A374908 (Python) %o A374908 from itertools import islice %o A374908 def b(n): return sum([6, 2, 5, 5, 4, 5, 6, 3, 7, 6][int(d)] for d in str(n)) %o A374908 def agen(): # generator of terms %o A374908 yield (an:=0) %o A374908 while True: yield (an:=an+b(an)) %o A374908 print(list(islice(agen(), 55))) # _Michael S. Branicky_, Jul 28 2024 %Y A374908 Cf. A006942, A219675. %K A374908 nonn,base,easy %O A374908 0,2 %A A374908 _David J. Ellis_, Jul 23 2024