cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374917 Inverse of the Fibonacci sequence beginning 1,1 with respect to binomial convolution.

This page as a plain text file.
%I A374917 #29 Aug 05 2024 17:52:57
%S A374917 1,-1,0,3,-5,-18,113,35,-3044,9755,87999,-882894,-1155935,69780087,
%T A374917 -292042360,-5040306157,64613044147,197030202470,-10570955773551,
%U A374917 48865639709115,1470783141900676,-21819085085811861,-123330624543827305,6244177033369108298,-28216305335425392575,-1453926618188019546193
%N A374917 Inverse of the Fibonacci sequence beginning 1,1 with respect to binomial convolution.
%C A374917 The binomial convolution of this sequence with the Fibonacci sequence beginning 1,1 gives the identity sequence with respect to convolution (A000007).
%H A374917 J. A. Adell and A. Lekuona, <a href="https://doi.org/10.1016/j.jmaa.2017.06.077">Binomial convolution and transformations of Appell polynomials</a>, J. Math. Anal. Appl. 456(1),  pp. 16-33, 2017.
%H A374917 P. Appell, <a href="https://doi.org/10.24033/asens.186">Sur une Classe de Polynômes</a>, Ann. Sci. École Norm. Sup. 9(2), pp. 119-144, 1880.
%F A374917 a(0) = 1, a(n) = -Sum_{k=1..n} binomial(n, k)*a(n - k)*A000045(k+1).
%F A374917 E.g.f.: 1/G'(x) where G(x) is the e.g.f. of A000045.
%F A374917 The recursion P(0, x) = 1, P(n, x) = x^n - Sum_{k=0..n-1} binomial(n, k)*a(n-k)*P(k, x) defines the so-called Appell-Fibonacci polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, where T(n, k) is the triangular array A094436.
%p A374917 p:=(1-sqrt(5))/2: q:=(1+sqrt(5))/2:
%p A374917 egf := (1-2*q)/(p*exp(p*x)-q*exp(q*x)): ser := series(egf, x, 27):
%p A374917 seq(n!*simplify(coeff(ser, x, n)), n=0..25); # _Peter Luschny_, Aug 05 2024
%t A374917 a[0] = 1; a[n_]:=a[n]= -Sum[Binomial[n, k] Fibonacci[k + 1] a[n - k], {k, 1, n}]
%t A374917 (* or, to generate the list L of the first n terms *)
%t A374917 phi = (1 + Sqrt[5])/2; psi = 1 - phi; L[n_] := CoefficientList[Series[(phi - psi)/(phi Exp[phi x] - psi Exp[psi x]), {x, 0, n}], x] Table[k!, {k, 0, n}]
%Y A374917 Cf. A000045, A001622, A094436.
%K A374917 sign
%O A374917 0,4
%A A374917 _Fernando Miranda_, _Maria Irene Falcao_ and Goncalo Carvalho, Jul 23 2024