This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374918 #10 Aug 14 2024 19:43:11 %S A374918 2,6,10,12,14,18,26,28,34,36,42,50,52,62,72,74,84,100,106,112,122,124, %T A374918 136,144,146,148,162,186,194,200,244,254,292,296,314,324,336,372,386, %U A374918 388,424,434,482,488,496,508,554,576,578,584,626,628,656,674,688,762 %N A374918 Even numbers k such that lambda(sum of even divisors of k) = phi(sum of odd divisors of k) where lambda is the Carmichael function (A002322) and phi the Euler totient function (A000010). %e A374918 a(18) = 100 because the divisors of 100 are {1, 2, 4, 5, 10, 20, 25, 50, 100} with lambda(2+4+10+20+50+100) = lambda(186) = 30 and phi(1+5+25) = phi(31) = 30. %p A374918 with(numtheory):nn:=800: %p A374918 for n from 2 by 2 to nn do: %p A374918 d:=divisors(n):n0:=nops(d):s0:=0:s1:=0: %p A374918 for i from 1 to n0 do: %p A374918 if irem(d[i],2)=0 %p A374918 then %p A374918 s0:=s0+d[i] else %p A374918 s1:=s1+d[i]: %p A374918 fi: %p A374918 od: %p A374918 if lambda(s0)=phi(s1) then %p A374918 printf(`%d, `,n):else fi: %p A374918 od: %t A374918 Select[Range[2, 1000, 2], EulerPhi[DivisorSigma[1, #/2^IntegerExponent[#, 2]]] == CarmichaelLambda[2*DivisorSigma[1, #/2]] &] (* _Amiram Eldar_, Jul 23 2024 *) %Y A374918 Cf. A000010, A000593, A002322, A074400. %K A374918 nonn %O A374918 1,1 %A A374918 _Michel Lagneau_, Jul 23 2024