This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374924 #16 May 30 2025 19:29:33 %S A374924 1,1,2,3,5,8,13,21,34,55,89,144,233,377,521,898,1419,2317,3736,5155, %T A374924 8891,12627,21518,34145,55663,77181,132844,166989,299833,466822, %U A374924 766655,1233477,1366321,2599798,3966119,6565917,9165715,15731632,24897347,31463264,47194896,62926528,94389792,141584688,188779584 %N A374924 Zero-avoiding Fibonacci sequence: a(n) is the largest zeroless number that can be written as a(i) + a(j) where 1 ≤ i < j < n with a(1) = a(2) = 1. %C A374924 Matches the Fibonacci sequence for the first 14 terms. This breaks after the 15th term because the 15th term of the Fibonacci sequence contains a 0. %C A374924 Empirically, the ratio between consecutive term approaches 1. Is this sequence eventually constant? %H A374924 Bryle Morga, <a href="/A374924/b374924.txt">Table of n, a(n) for n = 1..10000</a> %H A374924 Bryle Morga, <a href="/A374924/a374924.png">Log plot of the first 100,000 terms.</a> %H A374924 Bryle Morga, <a href="/A374924/a374924_1.png">Scatter plot of ratios between consecutive terms for the first 100,000 terms.</a> %F A374924 a(n+1) = max{a(n), max{A004719(a(i)+a(n)) for 1 <= i < n}}. - _Michael S. Branicky_, Jul 24 2024 %e A374924 a(15) = 521 because: %e A374924 a(13) + a(14) = 233 + 377 = 610. (contains a 0.) %e A374924 a(12) + a(14) = 144 + 377 = 521. %o A374924 (Python) %o A374924 from itertools import islice %o A374924 def z(n): return int(str(n).replace("0", "")) %o A374924 def agen(): # generator of terms %o A374924 yield 1 %o A374924 alst = [1, 1] %o A374924 an = 1 %o A374924 while True: %o A374924 yield an %o A374924 an = max(max(z(ai+an) for ai in alst[:-1]), an) %o A374924 alst.append(an) %o A374924 print(list(islice(agen(), 45))) # _Michael S. Branicky_, Jul 24 2024 %Y A374924 Cf. A000045, A004719. %K A374924 nonn,base %O A374924 1,3 %A A374924 _Bryle Morga_, Jul 24 2024